Virginia Tech
    • Log in
    View Item 
    •   VTechWorks Home
    • ETDs: Virginia Tech Electronic Theses and Dissertations
    • Masters Theses
    • View Item
    •   VTechWorks Home
    • ETDs: Virginia Tech Electronic Theses and Dissertations
    • Masters Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Adsorption kinetics for the removal of soluble manganese by oxide- coated filter media

    Thumbnail
    View/Open
    LD5655.V855_1988.H962.pdf (2.478Mb)
    Downloads: 917
    Date
    1988-12-05
    Author
    Hungate, Robert W.
    Metadata
    Show full item record
    Abstract
    This study was conducted to examine the kinetics of manganese sorption on oxide-coated filter media. Initial experimentation confirmed the findings of other investigators, the Mn²⁺ sorption capacity of oxide-coated media increases as solution pH increases. Further study revealed that uptake rate kinetics could be described by first order kinetics and also increased with increasing solution pH. The addition of free chlorine (HOCl) to solution greatly enhanced Mn²⁺ uptake rate kinetics. Later studies indicated that the oxide coating had very little impact on the physical properties of the media tested. Actual data from a water treatment plant filter confirmed laboratory experimental results by showing that sorption of soluble manganese does indeed occur on oxide-coated filters. The water treatment plant data also suggested that the sorption kinetics were relatively rapid, again upholding laboratory findings. Results from the manganese kinetics and sorption experiments were combined to formulate a theoretical model which would predict manganese breakthrough in a filter, given a known set of loading parameters. Preliminary use of the model indicated that oxide-coated filters could sorb significant quantities of soluble manganese before detectible levels of manganese appear in the effluent.
    URI
    http://hdl.handle.net/10919/43861
    Collections
    • Masters Theses [20806]

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us
     

     

    VTechWorks

    AboutPoliciesHelp

    Browse

    All of VTechWorksCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Log inRegister

    Statistics

    View Usage Statistics

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us