Virginia Tech
    • Log in
    View Item 
    •   VTechWorks Home
    • ETDs: Virginia Tech Electronic Theses and Dissertations
    • Masters Theses
    • View Item
    •   VTechWorks Home
    • ETDs: Virginia Tech Electronic Theses and Dissertations
    • Masters Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    The collectorless flotation of sphalerite

    Thumbnail
    View/Open
    LD5655.V855_1985.C729.pdf (4.699Mb)
    Downloads: 567
    Date
    1985-07-05
    Author
    Craynon, John Raymond
    Metadata
    Show full item record
    Abstract
    The flotation of sphalerite has been demonstrated without the use of collectors. The effect of redox potential, pH, and copper-activation have been investigated in tests using samples of pure mineral. It has been found that in general, collectorless flotation of sphalerite can be accomplished at potentials greater than -200 mV, SHE, and is more readily carried out in acidic solutions. It has also been shown that although copper-activation was necessary to achieve flotation recoveries above 35%, an excessive addition of cupric ions may result in a decrease in floatability. Batch flotation experiments conducted using Elmwood Mine sphalerite ore have shown that in addition to copper-activation, the addition of sodium sulfide was required to obtain high grades and recoveries. If the ratio of the addition of these reagents is maintained such that the atomic ratio of cupric ions to sulfide ions is 0.31, good flotation is observed over a range of reagent dosages. X-ray photoelectron spectroscopy (XPS) was conducted on pure mineral samples after microflotation testing. Based on the sulfur species identified on highly flotable samples, possible mechanisms for collectorless flotation of sphalerite have been suggested. These include: i) elemental sulfur formed under oxidizing conditions is responsible for collectorless flotation; ii) polysulfides or metal-deficient sulfides formed as a result of mineral oxidation are responsible for collectorless flotation; and iii) removal of HS- ions, which may render the surface hydrophilic, under oxidizing conditions. The third mechanism is based on the assumption that clean, unoxidized sphalerite surfaces are naturally hydrophobic. Evidence has been presented to suggest that the first mechanism may be responsible for collectorless flotation in acidic solutions, while the second mechanism may be of greater importance in nearly neutral or basic solutions where elemental sulfur is thermodynamically less stable.
    URI
    http://hdl.handle.net/10919/45645
    Collections
    • Masters Theses [21074]

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us
     

     

    VTechWorks

    AboutPoliciesHelp

    Browse

    All of VTechWorksCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Log inRegister

    Statistics

    View Usage Statistics

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us