Virginia Tech
    • Log in
    View Item 
    •   VTechWorks Home
    • ETDs: Virginia Tech Electronic Theses and Dissertations
    • Masters Theses
    • View Item
    •   VTechWorks Home
    • ETDs: Virginia Tech Electronic Theses and Dissertations
    • Masters Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Surface chemical aspects of microbubble flotation

    Thumbnail
    View/Open
    LD5655.V855_1987.H343.pdf (5.289Mb)
    Downloads: 466
    Date
    1987-05-15
    Author
    Hale, Waverly Mitchell
    Metadata
    Show full item record
    Abstract

    In order to demonstrate the ability of microbubble flotation to superclean coal to ash levels of less than 2%, several Eastern U. S. coals have been tested. The results show that the process is capable of producing superclean coal with improved recovery as compared to the conventional flotation process.

    To further improve and understand the microbubble flotation process, electrokinetic studies of the hydrocarbon oils used in flotation as collectors have been conducted. Also, the effect of oil emulsifiers on the zeta potential of oil droplets has been studied. In general, oil droplets are negatively charged and negative zeta potential is reduced with the addition of nonionic and cationic surfactants. On the other hand, the negative charge is increased with the addition of an anionic reagent. It has also been shown that the negative zeta potential of oil droplets increases with increasing hydrocarbon chain length.

    The effects of different collectors on induction time and flotation have been determined by conducting microflotation and induction time experiments using an Elkhorn seam coal sample. The results show that industrial oils combined with the coal have the shortest induction times and, therefore, the highest flotation yields as compared to pure hydrocarbon oils. It has also been shown that oil emulsifiers tend to increase flotation yield and reduce particle/bubble induction time.

    URI
    http://hdl.handle.net/10919/45816
    Collections
    • Masters Theses [19687]

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us
     

     

    VTechWorks

    AboutPoliciesHelp

    Browse

    All of VTechWorksCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Log inRegister

    Statistics

    View Usage Statistics

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us