Virginia Tech
    • Log in
    View Item 
    •   VTechWorks Home
    • ETDs: Virginia Tech Electronic Theses and Dissertations
    • Masters Theses
    • View Item
    •   VTechWorks Home
    • ETDs: Virginia Tech Electronic Theses and Dissertations
    • Masters Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    A coupled thermal-magnetic finite element model for high frequency transformers

    Thumbnail
    View/Open
    LD5655.V855_1990.J477.pdf (4.479Mb)
    Downloads: 238
    Date
    1990-12-20
    Author
    Jessee, J. Patrick
    Metadata
    Show full item record
    Abstract

    A new method for analyzing axisymmetric, high-frequency transformers is presented. The method is based on the simultaneous solution of the coupled, nonlinear thermal and electromagnetic equations using the finite element method. A novel technique for modeling the reluctivity of the soft-ferrite core material permits a time-harmonic transformation of the electromagnetic equations. This eliminates the need to step through time while maintaining the effects of hysteresis losses. Also, a quasi-steady formulation of the heat-conduction equation eliminates the time dependency on the thermal problem. A direct substitution iterative scheme is used in conjunction with the finite element method to compensate for the coupled and nonlinear nature of the equations. To verify the magnetics portion of the finite element code numerically, a linear, uncoupled test case is given which compares the magnetic results from the present method to those from a commercial software package. To investigate the accuracy of the fully coupled and nonlinear model, an example is presented which compares the results from the numerical analysis of an inductor to those obtained by experimental measurement.

    URI
    http://hdl.handle.net/10919/46291
    Collections
    • Masters Theses [19598]

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us
     

     

    VTechWorks

    AboutPoliciesHelp

    Browse

    All of VTechWorksCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Log inRegister

    Statistics

    View Usage Statistics

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us