Virginia Tech
    • Log in
    View Item 
    •   VTechWorks Home
    • ETDs: Virginia Tech Electronic Theses and Dissertations
    • Doctoral Dissertations
    • View Item
    •   VTechWorks Home
    • ETDs: Virginia Tech Electronic Theses and Dissertations
    • Doctoral Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Dynamic Causal Modeling Across Network Topologies

    Thumbnail
    View/Open
    Zaghlool_SB_D_2014.pdf (1.630Mb)
    Downloads: 2555
    Date
    2014-04-03
    Author
    Zaghlool, Shaza B.
    Metadata
    Show full item record
    Abstract
    Dynamic Causal Modeling (DCM) uses dynamical systems to represent the high-level neural processing strategy for a given cognitive task. The logical network topology of the model is specified by a combination of prior knowledge and statistical analysis of the neuro-imaging signals. Parameters of this a-priori model are then estimated and competing models are compared to determine the most likely model given experimental data. Inter-subject analysis using DCM is complicated by differences in model topology, which can vary across subjects due to errors in the first-level statistical analysis of fMRI data or variations in cognitive processing. This requires considerable judgment on the part of the experimenter to decide on the validity of assumptions used in the modeling and statistical analysis; in particular, the dropping of subjects with insufficient activity in a region of the model and ignoring activation not included in the model. This manual data filtering is required so that the fMRI model's network size is consistent across subjects. This thesis proposes a solution to this problem by treating missing regions in the first-level analysis as missing data, and performing estimation of the time course associated with any missing region using one of four candidate methods: zero-filling, average-filling, noise-filling using a fixed stochastic process, or one estimated using expectation-maximization. The effect of this estimation scheme was analyzed by treating it as a preprocessing step to DCM and observing the resulting effects on model evidence. Simulation studies show that estimation using expectation-maximization yields the highest classification accuracy using a simple loss function and highest model evidence, relative to other methods. This result held for various data set sizes and varying numbers of model choice. In real data, application to Go/No-Go and Simon tasks allowed computation of signals from the missing nodes and the consequent computation of model evidence in all subjects compared to 62 and 48 percent respectively if no preprocessing was performed. These results demonstrate the face validity of the preprocessing scheme and open the possibility of using single-subject DCM as an individual cognitive phenotyping tool.
    URI
    http://hdl.handle.net/10919/46874
    Collections
    • Doctoral Dissertations [16358]

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us
     

     

    VTechWorks

    AboutPoliciesHelp

    Browse

    All of VTechWorksCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Log inRegister

    Statistics

    View Usage Statistics

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us