Virginia Tech
    • Log in
    View Item 
    •   VTechWorks Home
    • College of Engineering (COE)
    • Bradley Department of Electrical and Computer Engineering
    • Scholarly Works, Electrical and Computer Engineering
    • View Item
    •   VTechWorks Home
    • College of Engineering (COE)
    • Bradley Department of Electrical and Computer Engineering
    • Scholarly Works, Electrical and Computer Engineering
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Estimate Of The Incoherent-Scattering Contribution To Lidar Backscatter From Clouds

    Thumbnail
    View/Open
    Main article (362.4Kb)
    Downloads: 395
    Date
    1999-09-01
    Author
    de Wolf, D. A.
    Russchenberg, H. W. J.
    Lighthart, L. P.
    Metadata
    Show full item record
    Abstract
    Lidar backscatter from clouds in the Delft University of Technology experiment is complicated by the fact that the transmitter has a narrow beam width, whereas the receiver has a much wider one. The issue here is whether reception of light scattered incoherently by cloud particles can contribute appreciably to the received power. The incoherent contribution can come from within as well as from outside the transmitter beam but in any case is due to at least two scattering processes in the cloud that are not included in the coherent forward scatter that leads to the usual exponentially attenuated contribution from single-particle backscatter. It is conceivable that a sizable fraction of the total received power within the receiver beam width is due to such incoherent-scattering processes. The ratio of this contribution to the direct (but attenuated) reflection from a single particle is estimated here by means of a distorted-Born approximation to the wave equation (with an incident cw monochromatic wave) and by comparison of the magnitude of the doubly scattered to that of the singly scattered flux. The same expressions are also obtained from a radiative-transfer formalism. The ratio underestimates incoherent multiple scattering when it is not small. Corrections that are due to changes in polarization are noted. (C) 1999 Optical Society of America.
    URI
    http://hdl.handle.net/10919/46895
    Collections
    • Scholarly Works, Center for Stochastic Processes in Science and Engineering (CSPISE) [22]
    • Scholarly Works, Electrical and Computer Engineering [734]

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us
     

     

    VTechWorks

    AboutPoliciesHelp

    Browse

    All of VTechWorksCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Log inRegister

    Statistics

    View Usage Statistics

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us