Show simple item record

dc.contributorVirginia Tech
dc.contributor.authorFassari, S.
dc.contributor.authorKlaus, M.
dc.date.accessioned2014-04-09T18:12:17Z
dc.date.available2014-04-09T18:12:17Z
dc.date.issued1998-09
dc.identifier.citationFassari, S.; Klaus, M., "coupling constant thresholds of perturbed periodic Hamiltonians," J. Math. Phys. 39, 4369 (1998); http://dx.doi.org/10.1063/1.532516
dc.identifier.issn0022-2488
dc.identifier.urihttp://hdl.handle.net/10919/47036
dc.description.abstractWe consider Schrodinger operators of the form H-lambda= -Delta + V + lambda W on L-2(R-v) (v=1, 2, or 3) with V periodic, W short range, and lambda a real non-negative parameter. Then the continuous spectrum of H-lambda has the typical band structure consisting of intervals, separated by gaps. In the gaps there may be discrete eigenvalues of H-lambda that are functions of the parameter lambda. Let (a,b) be a gap and E(lambda)E(a,b) an eigenvalue of H-lambda. We study the asymptotic behavior of E(lambda) as lambda approaches a critical value lambda(0), called a coupling constant threshold, at which the eigenvalue either emerges from or is absorbed into the continuous spectrum. A typical question is the following: Assuming E(lambda)down arrow a as lambda down arrow lambda(0), is E(lambda)-a similar to c(lambda - lambda(0))(alpha) for some alpha>0 and c not equal 0, or is there an expansion in some other quantity? As one expects from previous work in the case V=0, the answer strongly depends on v. (C) 1998 American Institute of Physics.
dc.language.isoen_US
dc.publisherAIP Publishing
dc.subjecth-lambda-w
dc.subjectschrodinger-operators
dc.subjecteigenvalues
dc.subjectsigma(h)
dc.subjectbehavior
dc.subjectgap
dc.titlecoupling constant thresholds of perturbed periodic Hamiltonians
dc.typeArticle - Refereed
dc.identifier.urlhttp://scitation.aip.org/content/aip/journal/jmp/39/9/10.1063/1.532516
dc.date.accessed2014-03-20
dc.title.serialJournal of Mathematical Physics
dc.identifier.doihttps://doi.org/10.1063/1.532516


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record