Show simple item record

dc.contributorVirginia Tech
dc.contributor.authorLange, H.
dc.contributor.authorZweifel, P. F.
dc.date.accessioned2014-04-09T18:12:18Z
dc.date.available2014-04-09T18:12:18Z
dc.date.issued1994-04
dc.identifier.citationLange, H.; Zweifel, P. F., "dissipation in Wigner-Poisson systems," J. Math. Phys. 35, 1513 (1994); http://dx.doi.org/10.1063/1.530887
dc.identifier.issn0022-2488
dc.identifier.urihttp://hdl.handle.net/10919/47040
dc.description.abstractThe Wigner-Poisson (WP) system (or quantum Vlasov-Poisson system) is modified to include dissipative terms in the Hamiltonian. By utilizing the equivalence of the WP system to the Schrodinger-Poisson system, global existence and uniqueness are proved and regularity properties are deduced. The proof differs somewhat from that for the nondissipative case treated previously by Brezzi-Markowich and Illner et al.; in particular the Hille-Yosida Theorem is used since the linear evolution is not unitary, and a Liapunov function is introduced to replace the energy, which is not conserved.
dc.description.sponsorshipNATO Collaborative Research Grant No. CRG-910979
dc.language.isoen_US
dc.publisherAIP Publishing
dc.subjectquantum
dc.titledissipation in Wigner-Poisson systems
dc.typeArticle
dc.identifier.urlhttp://scitation.aip.org/content/aip/journal/jmp/35/4/10.1063/1.530887
dc.date.accessed2014-03-20
dc.title.serialJournal of Mathematical Physics
dc.identifier.doihttps://doi.org/10.1063/1.530887


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record