Virginia Tech
    • Log in
    View Item 
    •   VTechWorks Home
    • College of Engineering (COE)
    • Bradley Department of Electrical and Computer Engineering
    • Scholarly Works, Electrical and Computer Engineering
    • View Item
    •   VTechWorks Home
    • College of Engineering (COE)
    • Bradley Department of Electrical and Computer Engineering
    • Scholarly Works, Electrical and Computer Engineering
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Model For Charged Dust Expansion Across A Magnetic Field

    Thumbnail
    View/Open
    Main article (5.825Mb)
    Downloads: 1673
    Date
    2013-07-01
    Author
    Fu, H.
    Scales, Wayne A.
    Metadata
    Show full item record
    Abstract
    Plasma fluctuations arise in the boundary region between charged dust clouds and background plasmas. A self-consistent computational model is developed to study expansion of a charged dust cloud across a magnetic field, creation of the inhomogeneous boundary layer and associated processes. The charging of the dust particulates produces a boundary layer and associated ambipolar electric field. This ambipolar field provides a source for low frequency dust acoustic waves in unmagnetized plasmas. A background magnetic field if sufficiently strong, may impact the dust acoustic wave evolution and dust density structures due to E x B and diamagnetic current generation. The dust acoustic density fluctuation generation across a strong magnetic field (omega(pe)/Omega(ce) << 1) may be suppressed as compared to an unmagnetized dusty plasma, which will be discussed. Fluctuations generated at longer timescales propagating along the dust boundary layer will also be investigated in the lower hybrid and dust lower hybrid frequency range. Applications to space and laboratory plasmas are discussed. (C) 2013 AIP Publishing LLC.
    URI
    http://hdl.handle.net/10919/47060
    Collections
    • Scholarly Works, Electrical and Computer Engineering [696]

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us
     

     

    VTechWorks

    AboutPoliciesHelp

    Browse

    All of VTechWorksCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Log inRegister

    Statistics

    View Usage Statistics

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us