Show simple item record

dc.contributorVirginia Techen_US
dc.contributor.authorRose, C. M.en_US
dc.contributor.authorBesieris, Ioannis M.en_US
dc.date.accessioned2014-04-09T18:12:24Z
dc.date.available2014-04-09T18:12:24Z
dc.date.issued1979-07-01
dc.identifier.citationRose, C. M.; Besieris, I. M., "Nth-order multifrequency coherence functions: functional path integral approach," J. Math. Phys. 20, 1530 (1979); http://dx.doi.org/10.1063/1.524213
dc.identifier.issn0022-2488
dc.identifier.urihttp://hdl.handle.net/10919/47069
dc.description.abstractA functional (or path) integral applicable to a broad class of randomly perturbed media is constructed for the nth_order multifrequency coherence function (a quantity intimately linked to nth_order pulse statistics). This path integral is subsequently carried out explicitly in the case of a nondispersive, deterministically homogeneous medium, with a simplified (quadratic) Kolmogorov spectrum, and a series of new results are derived. Special cases dealing with the two_frequency mutual coherence function for plane and beam pulsed waves are considered, and comparisons are made with previously reported findings.
dc.format.mimetypeapplication/pdfen_US
dc.language.isoen_US
dc.publisherAIP Publishing
dc.subjectCoherenceen_US
dc.titleNth-order multifrequency coherence functions: functional path integral approachen_US
dc.typeArticleen_US
dc.identifier.urlhttp://scitation.aip.org/content/aip/journal/jmp/20/7/10.1063/1.524213
dc.date.accessed2014-03-20
dc.title.serialJournal of Mathematical Physics
dc.identifier.doihttps://doi.org/10.1063/1.524213
dc.type.dcmitypeTexten_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record