Virginia Tech
    • Log in
    View Item 
    •   VTechWorks Home
    • College of Engineering (COE)
    • Department of Biomedical Engineering and Mechanics
    • Scholarly Works, Department of Biomedical Engineering and Mechanics
    • View Item
    •   VTechWorks Home
    • College of Engineering (COE)
    • Department of Biomedical Engineering and Mechanics
    • Scholarly Works, Department of Biomedical Engineering and Mechanics
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Numerical Estimates for the Bulk Viscosity of Ideal Gases

    Thumbnail
    View/Open
    Main article (839.0Kb)
    Downloads: 10548
    Date
    2012-06-01
    Author
    Cramer, Mark S.
    Metadata
    Show full item record
    Abstract
    We estimate the bulk viscosity of a selection of well known ideal gases. A relatively simple formula is combined with published values of rotational and vibrational relaxation times. It is shown that the bulk viscosity can take on a wide variety of numerical values and variations with temperature. Several fluids, including common diatomic gases, are seen to have bulk viscosities which are hundreds or thousands of times larger than their shear viscosities. We have also provided new estimates for the bulk viscosity of water vapor in the range 380-1000 K. We conjecture that the variation of bulk viscosity with temperature will have a local maximum for most fluids. The Lambert-Salter correlation is used to argue that the vibrational contribution to the bulk viscosities of a sequence of fluids having a similar number of hydrogen atoms at a fixed temperature will increase with the characteristic temperature of the lowest vibrational mode. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4729611]
    URI
    http://hdl.handle.net/10919/47646
    Collections
    • Scholarly Works, Department of Biomedical Engineering and Mechanics [438]

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us
     

     

    VTechWorks

    AboutPoliciesHelp

    Browse

    All of VTechWorksCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Log inRegister

    Statistics

    View Usage Statistics

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us