Virginia Tech
    • Log in
    View Item 
    •   VTechWorks Home
    • College of Engineering (COE)
    • Department of Biomedical Engineering and Mechanics
    • Scholarly Works, Department of Biomedical Engineering and Mechanics
    • View Item
    •   VTechWorks Home
    • College of Engineering (COE)
    • Department of Biomedical Engineering and Mechanics
    • Scholarly Works, Department of Biomedical Engineering and Mechanics
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Stability Characteristics of a Periodically Unsteady Mixing Layer

    Thumbnail
    View/Open
    Main article (304.2Kb)
    Downloads: 311
    Date
    1997-02-01
    Author
    Hajj, Muhammad R.
    Metadata
    Show full item record
    Abstract
    In nature, in many technological applications and in some laboratory experiments, the basic state of shear flows can be time-varying. The effects of such variations on the stability characteristics of these flows are not well understood. In previous work, Miksad et al. [J. Fluid Mech. 123, 1 (1982)] and Hajj et al. [J. Fluid Mech. 256, 385 (1992)], it has been shown that low-frequency components, generated by nonlinear difference interactions, play an important role in the redistribution of energy among spectral components. In particular, phase modulation was found to be the most effective mechanism in energy transfer to the sidebands of unstable modes. In this work, the effects of small-amplitude low-frequency mean how unsteadiness on the stability of a plane mixing layer are determined. By extending earlier analytical arguments, it is shown that periodicity in the mean flow causes modulations of the most unstable modes. The analysis is then verified experimentally by comparing levels of amplitude and phase modulations in mixing layers with steady and unsteady basic flows. The results show that small-amplitude low-frequency unsteadiness results in enhanced modulations of the fundamental mode. These modulations cause variations in the growth rates of the unstable modes and energy redistribution among them. (C) 1997 American Institute of Physics.
    URI
    http://hdl.handle.net/10919/47656
    Collections
    • Scholarly Works, Department of Biomedical Engineering and Mechanics [436]

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us
     

     

    VTechWorks

    AboutPoliciesHelp

    Browse

    All of VTechWorksCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Log inRegister

    Statistics

    View Usage Statistics

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us