Virginia Tech
    • Log in
    View Item 
    •   VTechWorks Home
    • College of Science (COS)
    • Department of Physics
    • Scholarly Works, Department of Physics
    • View Item
    •   VTechWorks Home
    • College of Science (COS)
    • Department of Physics
    • Scholarly Works, Department of Physics
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Critical dynamics at incommensurate phase transitions and NMR relaxation experiments

    Thumbnail
    View/Open
    Main article (361.4Kb)
    Downloads: 367
    Date
    1999-05
    Author
    Kaufmann, B. A.
    Schwabl, F.
    Täuber, Uwe C.
    Metadata
    Show full item record
    Abstract
    We study the critical dynamics of crystals which undergo a second-order phase transition from a high-temperature normal phase to a structurally incommensurate (IC) modulated phase. We give a comprehensive description of the critical dynamics of such systems, e.g., valid for crystals of the A(2)BX(4) family. Using an extended renormalization scheme, we present a framework in which we analyze the phases above and below the critical temperature T-I. Above T-I, the crossover from the critical behavior to the mean-field regime is studied. Specifically, the resulting width of the critical region is investigated. In the IC modulated phase, we consider explicitly the coupling of the order parameter modes to one-loop order. Here the Goldstone anomalies and their effect on measurable quantities are investigated. We show their relation with the postulated phason gap. While the theory can be applied to a variety of experiments, we concentrate on quadrupole-perturbed nuclear magnetic resonance (NMR) experiments. We find excellent agreement with these dynamical measurements and provide answers for some questions that arose from recent results. [S0163-1829(99)03417-7].
    URI
    http://hdl.handle.net/10919/47820
    Collections
    • Scholarly Works, Department of Physics [849]

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us
     

     

    VTechWorks

    AboutPoliciesHelp

    Browse

    All of VTechWorksCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Log inRegister

    Statistics

    View Usage Statistics

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us