Energies of the staggered flux phase: A numerical study

Files
Note (189.04 KB)
Downloads: 404
TR Number
Date
1990-11
Journal Title
Journal ISSN
Volume Title
Publisher
American Physical Society
Abstract

Kinetic and magnetic energies of the staggered flux phase, with a fictitious flux of equal magnitude but opposite direction in adjacent square plaquettes, are calculated for the two-dimensional t-J model using the variational Monte Carlo method. They are compared to the energies of the resonating-valence-bond state, the flux phase with half a quantum per plaquette, and the projected Fermi-liquid state. For about 10% hole concentration the staggered flux phase has the lowest energy of the nonsuperconducting states, but its energy is still higher than that of the superconducting d-wave state.

Description
Keywords
physics, condensed matter
Citation
Lee, T. K.; Chang, L. N., "Energies of the staggered flux phase: A numerical study," Phys. Rev. B 42, 8720(R) DOI: http://dx.doi.org/10.1103/PhysRevB.42.8720