Virginia Tech
    • Log in
    View Item 
    •   VTechWorks Home
    • College of Science (COS)
    • Department of Physics
    • Faculty Works, Department of Physics
    • View Item
    •   VTechWorks Home
    • College of Science (COS)
    • Department of Physics
    • Faculty Works, Department of Physics
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Optical properties of ion-implanted GaAs: The observation of finite-size effects in GaAs microcrystals

    Thumbnail
    View/Open
    Main article (519.1Kb)
    Downloads: 565
    Date
    1989-07
    Author
    Feng, G. F.
    Zallen, R.
    Metadata
    Show full item record
    Abstract
    We have carried out reflectivity measurements, for photon energies from 2.0 to 5.6 eV in the electronic interband regime, for a series of unannealed ion-implanted GaAs samples which had been exposed to 45-keV Be+ ions at various fluences up to 5×1014 ions/cm2. The microstructure of the near-surface implantation-induced damage layer in these samples is known (from previous Raman work) to consist of a fine-grain mixture of amorphous GaAs and GaAs microcrystals, with the characteristic microcrystal size L of the microcrystalline component decreasing with increasing fluence (L=55 Å at 5×1014 cm-2). The optical dielectric function of each sample’s damage layer has been derived from the observed reflectivity spectrum by Lorentz-oscillator analysis. Then, by inverting the effective-medium approximation, we have extracted the dielectric function of the microcrystalline component (μ-GaAs) within the damage layer. The optical properties of μ-GaAs differ appreciably from those of the bulk crystal, the difference increasing with decreasing L. We find that the microcrystallinity-induced spectral changes are concentrated in the linewidths of the prominent interband features E1, E1+Δ1, and E2. These linewidths increase linearly and rapidly with inverse microcrystal size: Γμ=Γ0+AL-1, where Γ0 is the linewidth in the bulk crystal, Γμ is the linewidth in μ-GaAs, and A is a constant. For the E1 and E2 peaks, the experimentally determined value of A is such that the finite-size broadening (AL-1) is about 0.2 eV when L=100 Å. We propose a simple theory of the finite-size effects which, when combined with band-structure information for GaAs, semiquantitatively accounts for our observations. Small microcrystal size implies a short time for an excited carrier to reach, and be scattered by, the microcrystal boundary, thus limiting the excited-state lifetime and broadening the excited-state energy. An alternative uncertainty-principle argument is also given in terms of the confinement-induced k-space broadening of electron states.
    URI
    http://hdl.handle.net/10919/47871
    Collections
    • Faculty Works, Department of Physics [660]

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us
     

     

    VTechWorks

    AboutPoliciesHelp

    Browse

    All of VTechWorksCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Log inRegister

    Statistics

    View Usage Statistics

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us