Virginia Tech
    • Log in
    View Item 
    •   VTechWorks Home
    • College of Science (COS)
    • Department of Physics
    • Scholarly Works, Department of Physics
    • View Item
    •   VTechWorks Home
    • College of Science (COS)
    • Department of Physics
    • Scholarly Works, Department of Physics
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Spectral momentum density of graphite from (e,2e) spectroscopy: Comparison with first-principles calculation

    Thumbnail
    View/Open
    Main article (1.047Mb)
    Downloads: 309
    Date
    1988-03
    Author
    Gao, C.
    Ritter, Alfred L.
    Dennison, John Robert
    Holzwarth, N. A. W.
    Metadata
    Show full item record
    Abstract
    We have measured the spectral momentum density ρ(E,q) of graphite by (e,2e) spectroscopy for momentum parallel and perpendicular to the crystal c axis. In the independent-electron approximation, ρ(E,q)=ΣG‖Uk(G)‖2 δ(q-k-G)δ(E-E(k)) where the one-electron wave function is Ψk(r)=eik⋅rΣGUk(G)eiG⋅r) and G is a reciprocal-lattice vector. The measurements covered a range of momentum parallel to the c axis equal to 0≤‖q‖≤1.84 Å-1 and a range of momentum perpendicular to the c axis equal to 0≤‖q‖≤2.35 Å-1. The energy range spanned the valence band of graphite from 4.4 eV above the Fermi energy to 27.6 eV below the Fermi energy. The momentum resolution was 0.47 and 0.73 Å-1 (full width at half maximum) for momentum parallel and perpendicular to the c axis, respectively. The energy resolution was 8.6 eV. The maximum coincidence rate was ∼0.02 counts/sec. The band structure E(k) and spectral density ‖Uk(G)‖2 have been calculated from first principles using a self-consistent density-functional theory in the local-density approximation with a mixed-basis pseudopotential technique. The agreement within experimental uncertainties between measurement and theory is excellent.
    URI
    http://hdl.handle.net/10919/47890
    Collections
    • Scholarly Works, Department of Physics [873]

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us
     

     

    VTechWorks

    AboutPoliciesHelp

    Browse

    All of VTechWorksCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Log inRegister

    Statistics

    View Usage Statistics

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us