Interpolatory projection methods for parameterized model reduction

Date
2011Author
Baur, Ulrike
Beattie, Christopher A.
Benner, Peter
Gugercin, Serkan
Metadata
Show full item recordAbstract
We provide a unifying projection-based framework for structure-preserving interpolatory model reduction of parameterized linear dynamical systems, i.e., systems having a structured dependence on parameters that we wish to retain in the reduced-order model. The parameter dependence may be linear or nonlinear and is retained in the reduced-order model. Moreover, we are able to give conditions under which the gradient and Hessian of the system response with respect to the system parameters is matched in the reduced-order model. We provide a systematic approach built on established interpolatory H(2) optimal model reduction methods that will produce parameterized reduced-order models having high fidelity throughout a parameter range of interest. For single input/single output systems with parameters in the input/output maps, we provide reduced-order models that are optimal with respect to an H(2) circle times L(2) joint error measure. The capabilities of these approaches are illustrated by several numerical examples from technical applications.