Show simple item record

dc.contributor.authorBassaganya-Riera, Josepen_US
dc.contributor.authorViladomiu, Monicaen_US
dc.contributor.authorPedragosa, Mireiaen_US
dc.contributor.authorDe Simone, Claudioen_US
dc.contributor.authorCarbo, Adriaen_US
dc.contributor.authorShaykhutdinov, Rustemen_US
dc.contributor.authorJobin, Christianen_US
dc.contributor.authorArthur, Janelle C.en_US
dc.contributor.authorCorl, Benjamin A.en_US
dc.contributor.authorVogel, Hansen_US
dc.contributor.authorStorr, Martinen_US
dc.contributor.authorHontecillas, Raquelen_US
dc.date.accessioned2014-06-17T20:12:07Z
dc.date.available2014-06-17T20:12:07Z
dc.date.issued2012-02-21en_US
dc.identifier.citationBassaganya-Riera J, Viladomiu M, Pedragosa M, De Simone C, Carbo A, et al. (2012) Probiotic Bacteria Produce Conjugated Linoleic Acid Locally in the Gut That Targets Macrophage PPAR γ to Suppress Colitis. PLoS ONE 7(2): e31238. doi:10.1371/journal.pone.0031238en_US
dc.identifier.issn1932-6203en_US
dc.identifier.urihttp://hdl.handle.net/10919/48990
dc.description.abstractBackground: Inflammatory bowel disease (IBD) therapies are modestly successful and associated with significant side effects. Thus, the investigation of novel approaches to prevent colitis is important. Probiotic bacteria can produce immunoregulatory metabolites in vitro such as conjugated linoleic acid (CLA), a polyunsaturated fatty acid with potent anti-inflammatory effects. This study aimed to investigate the cellular and molecular mechanisms underlying the anti-inflammatory efficacy of probiotic bacteria using a mouse model of colitis. Methodology/Principal Findings: The immune modulatory mechanisms of VSL#3 probiotic bacteria and CLA were investigated in a mouse model of DSS colitis. Colonic specimens were collected for histopathology, gene expression and flow cytometry analyses. Immune cell subsets in the mesenteric lymph nodes (MLN), spleen, blood and colonic lamina propria cells were phenotypically and functionally characterized. Fecal samples and colonic contents were collected to determine the effect of VSL#3 and CLA on gut microbial diversity and CLA production. CLA and VSL#3 treatment ameliorated colitis and decreased colonic bacterial diversity, a finding that correlated with decreased gut pathology. Colonic CLA concentrations were increased in response to probiotic bacterial treatment, but without systemic distribution in blood. VSL#3 and CLA decreased macrophage accumulation in the MLN of mice with DSS colitis. The loss of PPAR γ in myeloid cells abrogated the protective effect of probiotic bacteria and CLA in mice with DSS colitis. Conclusions/Significance: Probiotic bacteria modulate gut microbial diversity and favor local production of CLA in the colon that targets myeloid cell PPAR γ to suppress colitis.en_US
dc.language.isoen_USen_US
dc.publisherPublic Library of Scienceen_US
dc.subjectBacterial pathologyen_US
dc.subjectColonen_US
dc.subjectGut Bacteriaen_US
dc.subjectInflamationen_US
dc.subjectLinoleic aciden_US
dc.subjectMicrophagesen_US
dc.subjectProbioticsen_US
dc.subjectColitis
dc.titleProbiotic bacteria produce conjugated linoleic acid locally in the gut that targets macrophage PPAR gamma to suppress colitisen_US
dc.typeArticle - Refereeden_US
dc.identifier.urlhttp://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0031238en_US
dc.date.accessed2014-04-30en_US
dc.title.serialPLoS ONEen_US
dc.identifier.doihttps://doi.org/10.1371/journal.pone.0031238


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record