Virginia Tech
    • Log in
    View Item 
    •   VTechWorks Home
    • Fralin Life Sciences Institute
    • Scholarly Works, Fralin Life Sciences Institute
    • View Item
    •   VTechWorks Home
    • Fralin Life Sciences Institute
    • Scholarly Works, Fralin Life Sciences Institute
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Helicobacter pylori Colonization Ameliorates Glucose Homeostasis in Mice through a PPAR γ-Dependent Mechanism

    Thumbnail
    View/Open
    journal_pone_0050069.pdf (875.8Kb)
    Downloads: 278
    Date
    2012-11-15
    Author
    Bassaganya-Riera, Josep
    Dominguez-Bello, Maria Gloria
    Kronsteiner, Barbara
    Carbo, Adria
    Pinyi, Lu
    Viladomiu, Monica
    Pedragosa, Mireia
    Zhang, Xiaoying
    Sobral, Bruno
    Mane, Shrinivasrao P.
    Mohapatra, Saroj K.
    Horne, William T.
    Guri, Amir J.
    Groeschl, Michael
    Lopez-Velasco, Gabriela
    Hontecillas, Raquel
    Metadata
    Show full item record
    Abstract
    Background: There is an inverse secular trend between the incidence of obesity and gastric colonization with Helicobacter pylori, a bacterium that can affect the secretion of gastric hormones that relate to energy homeostasis. H. pylori strains that carry the cag pathogenicity island (PAI) interact more intimately with gastric epithelial cells and trigger more extensive host responses than cag− strains. We hypothesized that gastric colonization with H. pylori strains differing in cag PAI status exert distinct effects on metabolic and inflammatory phenotypes. Methodology/Principal Findings: To test this hypothesis, we examined metabolic and inflammatory markers in db/db mice and mice with diet-induced obesity experimentally infected with isogenic forms of H. pylori strain 26695: the cag PAI wild-type and its cag PAI mutant strain 99–305. H. pylori colonization decreased fasting blood glucose levels, increased levels of leptin, improved glucose tolerance, and suppressed weight gain. A response found in both wild-type and mutant H. pylori strain-infected mice included decreased white adipose tissue macrophages (ATM) and increased adipose tissue regulatory T cells (Treg) cells. Gene expression analyses demonstrated upregulation of gastric PPAR γ-responsive genes (i.e., CD36 and FABP4) in H. pylori-infected mice. The loss of PPAR γ in immune and epithelial cells in mice impaired the ability of H. pylori to favorably modulate glucose homeostasis and ATM infiltration during high fat feeding. Conclusions/Significance: Gastric infection with some commensal strains of H. pylori ameliorates glucose homeostasis in mice through a PPAR γ-dependent mechanism and modulates macrophage and Treg cell infiltration into the abdominal white adipose tissue.
    URI
    http://hdl.handle.net/10919/49001
    Collections
    • Scholarly Works, Fralin Life Sciences Institute [542]

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us
     

     

    VTechWorks

    AboutPoliciesHelp

    Browse

    All of VTechWorksCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Log inRegister

    Statistics

    View Usage Statistics

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us