Virginia Tech
    • Log in
    View Item 
    •   VTechWorks Home
    • ETDs: Virginia Tech Electronic Theses and Dissertations
    • Doctoral Dissertations
    • View Item
    •   VTechWorks Home
    • ETDs: Virginia Tech Electronic Theses and Dissertations
    • Doctoral Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Isoform-Selective HDAC Inhibition for the Treatment of Lupus Nephritis

    Thumbnail
    View/Open
    Regna_NL_D_2014.pdf (2.956Mb)
    Downloads: 1994
    Supporting documents (282.2Kb)
    Downloads: 276
    Date
    2014-06-19
    Author
    Regna, Nicole Lynn
    Metadata
    Show full item record
    Abstract
    Systemic lupus erythematosus (SLE) is a prototypic autoimmune disease requiring a genetic predisposition coupled with an environmental trigger in order for initiation of disease. While the exact pathoaetiology has yet to be determined, both B and T cell dysregulation are thought to contribute to disease. Histone deacetylases (HDACs) are a class of enzymes that hydrolyze the lysine bound acetyl group in both histone and non-histone proteins thereby altering protein structure and function. While the use of pan-HDAC inhibitors has proven to be effective for the treatment of a number of acute diseases, they may not be viable as therapeutics for chronic disease due to cytotoxicity and adverse side effects following long term treatment. We sought to determine whether treatment with a class I and II HDAC inhibitor (HDACi) or a specific HDAC6i would be able to ameliorate disease in lupus-prone NZB/W mice. We found that both the class I and II HDACi (ITF2357) and the HDAC6i (ACY-738) were able to decrease SLE markers of disease including splenomegaly, proteinuria, and anti-dsDNA and IgG production in the sera. Treatment with ITF2357 resulted in an increase in the number of immunosuppressive regulatory T (Treg) cells and a decrease in the pro-inflammatory Th17 phenotype. Furthermore, ITF2357 was found to increase Foxp3 acetylation leading to increased Foxp3 stability allowing for differentiation into the Treg phenotype. ACY-738 treatment was able to correct aberrant bone marrow B cell differentiation while also increasing the number of splenic Treg cells in NZB/W mice. These results suggest that HDAC inhibition is able to ameliorate SLE in NZB/W mice by altering aberrant T and B cell differentiation. Additional studies were performed to further examine the expression and function of different HDAC isoforms in immune cells. Due to the ability of HDAC inhibition to decrease markers of SLE disease as well as alter B and T cell development and differentiation, we sought to determine if specific HDAC isoforms are altered in lupus vs non lupus mice in early and late disease states. We determined the level of class IIb HDAC (HDACs 6, 9, and 10) expression in bone marrow B cells, splenic B and T cells, and glomerular cells from early- and late-disease MRL/lpr lupus-prone mice compared to healthy, age-matched C57BL/6 control mice. Expression of HDAC6 and HDAC9 were significantly increased in all of the tissues tested from MRL/lpr mice. Furthermore, both cytoplasmic and nuclear HDAC activity was increased in diseased MRL/lpr mice, and HDAC activity and expression continued to increase as disease progressed. In vitro treatment with ACY-738, a selective HDAC6i, was able to decrease cytoplasmic HDAC activity and inhibit iNOS production. Furthermore, ACY-738 was able to alter apoptosis through increased Bax expression in B cells. Treatment with ACY-738 was also able to inhibit Hsp90 expression and decrease NF-κB nuclear translocation, which are both upregulated during active SLE. Our studies indicate that HDAC activity contributes to SLE pathogenesis and that the use of isoform-selective HDAC inhibitors may be a viable treatment for SLE.
    URI
    http://hdl.handle.net/10919/49023
    Collections
    • Doctoral Dissertations [14916]

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us
     

     

    VTechWorks

    AboutPoliciesHelp

    Browse

    All of VTechWorksCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Log inRegister

    Statistics

    View Usage Statistics

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us