Virginia Tech
    • Log in
    View Item 
    •   VTechWorks Home
    • ETDs: Virginia Tech Electronic Theses and Dissertations
    • Masters Theses
    • View Item
    •   VTechWorks Home
    • ETDs: Virginia Tech Electronic Theses and Dissertations
    • Masters Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Methods of Diffusing Pulse Detonation Combustion

    Thumbnail
    View/Open
    Janka_AM_T_2014.pdf (2.653Mb)
    Downloads: 2117
    Date
    2014-06-29
    Author
    Janka, Adam Martin
    Metadata
    Show full item record
    Abstract
    Pulse detonation combustion has been of interest for many years since it offers several advantages over standard deflagrative combustion. In theory, detonative combustion is a better use of fuel compared to deflagrative combustion since less entropy is generated during a detonation. As a result, detonation offers higher pressure and temperature gain across the wave front compared to the comparable deflagration. Since a detonation is a supersonic event which uses a shock to compress and dissociate reactants, a Pulse Detonation Combustor (PDC) is a relatively simple device that does not necessarily require a large compressor section at the inlet. Despite these benefits, using a turbine to extract work from a PDC is a problem littered with technical challenges. A PDC necessarily operates cyclically, producing highly transient pressure and temperature fields. This cyclic operation presents concerns with regards to turbine reliability and effective work extraction. The research presented here investigated the implementation of a pulse detonation diffuser, a device intended to temporally and spatially distribute the energy produced during a detonation pulse. This device would be an inert extension from a baseline PDC, manipulating the decaying detonation front while minimizing entropy production. A diffuser will seek to elongate, steady, attenuate, and maintain the quality of energy contained in the exhaust of a detonation pulse. These functions intend to reduce stresses introduced to a turbine and aid in effective work extraction. The goal of this research was to design, implement, and evaluate such a diffuser using the using conventional analysis and simulated and physical experimentation. Diffuser concepts using various wave dynamic mechanisms were generated. Analytical models were developed to estimate basic timing and wave attenuation parameters for a given design. These models served to inform the detail design process, providing an idea for geometric scale for a diffuser. Designs were simulated in ANSYS Fluent. The simulated performance of each diffuser was measured using metrics quantifying the wave attenuation, pulse elongation, pulse steadying, and entropy generation for each design. The most promising diffuser was fabricated and tested using a detonation tube. Diffuser performance was compared against analytical and computational models using dynamic pressure transducer diagnostics.
    URI
    http://hdl.handle.net/10919/49152
    Collections
    • Masters Theses [21214]

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us
     

     

    VTechWorks

    AboutPoliciesHelp

    Browse

    All of VTechWorksCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Log inRegister

    Statistics

    View Usage Statistics

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us