• Log in
    View Item 
    •   VTechWorks Home
    • ETDs: Virginia Tech Electronic Theses and Dissertations
    • Masters Theses
    • View Item
    •   VTechWorks Home
    • ETDs: Virginia Tech Electronic Theses and Dissertations
    • Masters Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Applying the Newmark Method to the Discontinuous Deformation Analysis

    Thumbnail
    View/Open
    Peng_B_T_2014.pdf (3.232Mb)
    Downloads: 1048
    Date
    2014-12-08
    Author
    Peng, Bo
    Metadata
    Show full item record
    Abstract
    Discontinuous deformation analysis (DDA) is a newly developed simulation method for discontinuous systems. It was designed to simulate systems with arbitrary shaped blocks with high efficiency while providing accurate solutions for energy dissipation. But DDA usually exhibits damping effects that are inconsistent with theoretical solutions. The deep reason for these artificial damping effects has been an open question, and it is hypothesized that these damping effects could result from the time integration scheme. In this thesis two time integration methods are investigated: the forward Euler method and the Newmark method. The work begins by combining the Newmark method and the DDA. An integrated Newmark method is also developed, where velocity and acceleration do not need to be updated. In simulations, two of the most widely used models are adopted to test the forward Euler method and the Newmark method. The first one is a sliding model, in which both the forward Euler method and the Newmark method give accurate solutions compared with analytical results. The second model is an impacting model, in which the Newmark method has much better accuracy than the forward Euler method, and there are minimal damping effects.
    URI
    http://hdl.handle.net/10919/51092
    Collections
    • Masters Theses [17908]

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us
     

     

    VTechWorks

    AboutPoliciesHelp

    Browse

    All of VTechWorksCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Log inRegister

    Statistics

    View Usage Statistics

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us