Show simple item record

dc.contributor.authorDoering, Jonathan Adamen_US
dc.date.accessioned2015-01-25T07:00:10Z
dc.date.available2015-01-25T07:00:10Z
dc.date.issued2013-08-02en_US
dc.identifier.othervt_gsexam:1354en_US
dc.identifier.urihttp://hdl.handle.net/10919/51220
dc.description.abstractDuchenne Muscular Dystrophy (DMD) is characterized by progressive muscle degeneration and a chronic inflammatory response. Sphingolipid metabolites are associated with the generation or perpetuation of low-grade chronic inflammation critical in atherosclerosis, obesity and cancer. Dietary sphingolipids, however, can suppress intestinal inflammation. We hypothesized that dietary sphingomyelin (SM) from bovine milk can modulate the inflammatory signature and improve muscle function in mdx mice, a model of DMD. C57BL10 (WT) and mdx mice were fed AIN 76A diet ± 0.1% SM for 7 weeks starting at age 4 weeks (n=10/group: WT, WT + S, mdx, mdx + S). At ages 5, 7, and 9 weeks, ankle flexor torque was determined in vivo. Mice were euthanized at 11 wks. Serum creatine kinase and extensor digitorum longus (EDL) contractile properties in vitro were determined; Tibialis Anterior (TA) inflammatory markers were profiled by qRT-PCR; TA sections were stained with H&E and immunohistochemistry for p-Akt was performed. At age 9 weeks, in vivo ankle flexor torque at stimulation frequencies 50-150 Hz was greater in mdx+S vs. mdx (P=0.0160) and WT (P<0.0001). At 11 wks, only WT+S EDL stress in vitro was greater than all other groups at 50-150 Hz. The in vitro relative stress-frequency relationship of mdx+S EDL was left shifted from the other treatment groups. Inflammatory genetic markers were increased in mdx+S mice. These data suggest treatment of mdx mice with 0.1% SM improves ankle flexor torque in vivo, causes a left shift of the stress-frequency relationship in vitro, and modulates the inflammatory gene signature.en_US
dc.format.mediumETDen_US
dc.publisherVirginia Techen_US
dc.rightsThis Item is protected by copyright and/or related rights. Some uses of this Item may be deemed fair and permitted by law even without permission from the rights holder(s), or the rights holder(s) may have licensed the work for use under certain conditions. For other uses you need to obtain permission from the rights holder(s).en_US
dc.subjectDuchenne Muscular Dystrophyen_US
dc.subjectmdxen_US
dc.subjectinflammationen_US
dc.subjectsphingolipidsen_US
dc.subjectmuscle functionen_US
dc.titleSphingolipids Modulate the Inflammatory and Functional Response in mdx Miceen_US
dc.typeThesisen_US
dc.contributor.departmentHuman Nutrition, Foods, and Exerciseen_US
dc.description.degreeMaster of Scienceen_US
thesis.degree.nameMaster of Scienceen_US
thesis.degree.levelmastersen_US
thesis.degree.grantorVirginia Polytechnic Institute and State Universityen_US
thesis.degree.disciplineHuman Nutrition, Foods, and Exerciseen_US
dc.contributor.committeechairGrange, Robert W.en_US
dc.contributor.committeememberSchmelz, Eva Mariaen_US
dc.contributor.committeememberElgert, Klaus D.en_US


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record