Show simple item record

dc.contributorVirginia Tech. School of Biomedical Engineering and Sciencesen_US
dc.contributorVirginia Tech. Institute for Critical Technology and Applied Scienceen_US
dc.contributorVirginia-Maryland College of Veterinary Medicine. Department of Biomedical Sciences and Pathobiologyen_US
dc.contributorVirginia Tech. Mechanical Engineering Departmenten_US
dc.contributor.authorSharma, Pujaen_US
dc.contributor.authorSheets, Kevinen_US
dc.contributor.authorElankumaran, Subbiahen_US
dc.contributor.authorNain, Amrinder S.en_US
dc.date.accessioned2015-04-20T22:22:12Z
dc.date.available2015-04-20T22:22:12Z
dc.date.issued2013-06-03
dc.identifier.citationSharma, P., Sheets, K., Elankumaran, S., & Nain, A. S. (2013). The mechanistic influence of aligned nanofibers on cell shape, migration and blebbing dynamics of glioma cells. Integrative Biology, 5(8), 1036-1044. doi: 10.1039/C3IB40073E
dc.identifier.issn1757-9694
dc.identifier.urihttp://hdl.handle.net/10919/51728
dc.description.abstractInvestigating the mechanistic influence of the tumor microenvironment on cancer cell migration and membrane blebbing is crucial in the understanding and eventual arrest of cancer metastasis. In this study, we investigate the effect of suspended and aligned nanofibers on the glioma cytoskeleton, cell shape, migration and plasma membrane blebbing dynamics using a non-electrospinning fiber-manufacturing platform. Cells attached in repeatable shapes of spindle on single fibers, rectangular on two parallel fibers and polygonal on intersecting fibers. Structural stiffness (N m_1) of aligned and suspended nanofibers (average diameter: 400 nm, length: 4, 6, and 10 mm) was found to significantly alter the migration speed with higher migration on lower stiffness fibers. For cells attached to fibers and exhibiting blebbing, an increase in cellular spread area resulted in both reduced bleb count and bleb size with an overall increase in cell migration speed. Blebs no longer appeared past a critical cellular spread area of approximately 1400 _m2. Our results highlighting the influence of the mechanistic environment on the invasion dynamics of glioma cells add to the understanding of how biophysical components influence glioma cell migration and blebbing dynamics.
dc.description.sponsorshipJeffress Memorial Trust
dc.description.sponsorshipAndrea and Bill Waide
dc.format.mimetypeapplication/pdfen_US
dc.format.mimetypeimage/jpegen_US
dc.format.mimetypetext/plainen_US
dc.language.isoen_US
dc.publisherThe Royal Society of Chemistry
dc.relation.ispartofseriesOpen access articles from Integrative Biology
dc.relation.urihttp://pubs.rsc.org/en/journals/articlecollectionlanding?sercode=ib&themeid=ab0f94be-eff2-4286-b96e-367458372850
dc.rightsCreative Commons Attribution-NonCommercial 3.0 Unported
dc.rights.urihttp://creativecommons.org/licenses/by-nc/3.0/
dc.subjectNanofibersen_US
dc.subjectTumorsen_US
dc.subjectGlioblastoma multiformeen_US
dc.subjectCancer cell migrationen_US
dc.titleThe Mechanistic Influence of Aligned Nanofiber Networks on Cell Shape, Migration and Blebbing Dynamics of Glioma Cellsen_US
dc.typeArticleen_US
dc.typeImageen_US
dc.description.notesSupplementary information is included in separate files. A supplementary video can be accessed at the following URL - http://www.rsc.org/suppdata/ib/c3/c3ib40073e/c3ib40073e.wmv
dc.identifier.urlhttp://pubs.rsc.org/en/content/articlelanding/2013/ib/c3ib40073e
dc.date.accessed2015-04-17
dc.title.serialIntegrative Biology
dc.identifier.doihttps://doi.org/10.1039/C3IB40073E
dc.type.dcmitypeTexten_US
dc.type.dcmitypeImageen_US
dc.type.dcmitypeStillImageen_US


Files in this item

Thumbnail
Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

Creative Commons Attribution-NonCommercial 3.0 Unported
License: Creative Commons Attribution-NonCommercial 3.0 Unported