Virginia Tech
    • Log in
    View Item 
    •   VTechWorks Home
    • College of Engineering (COE)
    • Bradley Department of Electrical and Computer Engineering
    • Scholarly Works, Electrical and Computer Engineering
    • View Item
    •   VTechWorks Home
    • College of Engineering (COE)
    • Bradley Department of Electrical and Computer Engineering
    • Scholarly Works, Electrical and Computer Engineering
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Growth, strain relaxation properties and high-kappa dielectric integration of mixed-anion GaAs1-ySby metamorphic materials

    Thumbnail
    View/Open
    2014_Zhu_et_al.pdf (2.705Mb)
    Downloads: 249
    Date
    2014-10-17
    Author
    Zhu, Yizheng
    Clavel, M.
    Goley, Patrick S.
    Hudait, Mantu K.
    Metadata
    Show full item record
    Abstract
    Mixed-anion, GaAs1-ySby metamorphic materials with a wide range of antimony (Sb) compositions extending from 15% to 62%, were grown by solid source molecular beam epitaxy (MBE) on GaAs substrates. The impact of different growth parameters on the Sb composition in GaAs1-ySby materials was systemically investigated. The Sb composition was well-controlled by carefully optimizing the As/Ga ratio, the Sb/Ga ratio, and the substrate temperature during the MBE growth process. High-resolution x-ray diffraction demonstrated a quasi-complete strain relaxation within each composition of GaAs1-ySby. Atomic force microscopy exhibited smooth surface morphologies across the wide range of Sb compositions in the GaAs1-ySby structures. Selected high-kappa dielectric materials, Al2O3, HfO2, and Ta2O5 were deposited using atomic layer deposition on the GaAs0.38Sb0.62 material, and their respective band alignment properties were investigated by x-ray photoelectron spectroscopy (XPS). Detailed XPS analysis revealed a valence band offset of > 2 eV for all three dielectric materials on GaAs0.38Sb0.62, indicating the potential of utilizing these dielectrics on GaAs0.38Sb0.62 for p-type metal-oxide-semiconductor (MOS) applications. Moreover, both Al2O3 and HfO2 showed a conduction band offset of > 2 eV on GaAs0.38Sb0.62, suggesting these two dielectrics can also be used for n-type MOS applications. The well-controlled Sb composition in several GaAs1-ySby material systems and the detailed band alignment analysis of multiple high-kappa dielectric materials on a fixed Sb composition, GaAs0.38Sb0.62, provides a pathway to utilize GaAs1-ySby materials in future microelectronic and optoelectronic applications. (C) 2014 AIP Publishing LLC.
    URI
    http://hdl.handle.net/10919/51970
    Collections
    • Scholarly Works, Electrical and Computer Engineering [682]

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us
     

     

    VTechWorks

    AboutPoliciesHelp

    Browse

    All of VTechWorksCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Log inRegister

    Statistics

    View Usage Statistics

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us