Virginia Tech
    • Log in
    View Item 
    •   VTechWorks Home
    • College of Engineering (COE)
    • Bradley Department of Electrical and Computer Engineering
    • Scholarly Works, Electrical and Computer Engineering
    • View Item
    •   VTechWorks Home
    • College of Engineering (COE)
    • Bradley Department of Electrical and Computer Engineering
    • Scholarly Works, Electrical and Computer Engineering
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Quasi-zero lattice mismatch and band alignment of BaTiO3 on epitaxial (110)Ge

    Thumbnail
    View/Open
    2013_Hudait_Zhu_et_al.pdf (1.630Mb)
    Downloads: 475
    Date
    2013-07-14
    Author
    Hudait, Mantu K.
    Zhu, Yizheng
    Jain, Nikhil
    Maurya, Deepam
    Zhou, Y.
    Priya, Shashank
    Metadata
    Show full item record
    Abstract
    Growth, structural, and band alignment properties of pulsed laser deposited amorphous BaTiO3 on epitaxial molecular beam epitaxy grown (110) Ge layer, as well as their utilization in low power transistor are reported. High-resolution x-ray diffraction demonstrated quasi-zero lattice mismatch of BaTiO3 on (110) Ge. Cross-sectional transmission electron microscopy micrograph confirms the amorphous nature of BaTiO3 layer as well as shows a sharp heterointerface between BaTiO3 and Ge with no traceable interfacial layer. The valence band offset, Delta E-v, of 1.99 +/- 0.05 eV at the BaTiO3/(110) Ge heterointerface is measured using x-ray photoelectron spectroscopy. The conduction band offset, Delta E-c, of 1.14 +/- 0.1 eV is calculated using the bandgap energies of BaTiO3 of 3.8 eV and Ge of 0.67 eV. These band offset parameters for carrier confinement and the interface chemical properties of the BaTiO3/(110) Ge system are significant advancement towards designing Ge-based p-and n-channel metal-oxide semiconductor field-effect transistors for low-power application. (C) 2013 AIP Publishing LLC.
    URI
    http://hdl.handle.net/10919/51977
    Collections
    • Scholarly Works, Electrical and Computer Engineering [734]

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us
     

     

    VTechWorks

    AboutPoliciesHelp

    Browse

    All of VTechWorksCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Log inRegister

    Statistics

    View Usage Statistics

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us