VTechWorks staff will be away for the Thanksgiving holiday starting Wednesday afternoon, Nov. 25, through Sunday Nov. 29, and will not be replying to requests during this time. Thank you for your patience.

Show simple item record

dc.contributorVirginia Tech. Harry Lynde Bradley Department of Electrical Engineeringen_US
dc.contributor.authorDewolf, David A.en_US
dc.date.accessioned2015-05-05T14:29:48Z
dc.date.available2015-05-05T14:29:48Z
dc.date.issued1989-06-15
dc.identifier.citationDewolf, D. A. (1989). Gaussian decomposition of beams and other functions. Journal of Applied Physics, 65(12), 5166-5169. doi: 10.1063/1.343144
dc.identifier.issn0021-8979
dc.identifier.urihttp://hdl.handle.net/10919/52001
dc.description.abstractThe Gabor expansion of a function f_(x) decomposes it into a double sum over integers m and n of a product of basis functions g(x_m X) and Fourier_series exponentials exp(2πi n/X) for given spacing X. The choice of basis function determines the coefficients a m n of the expansion. If f_(x) is band limited, the double sum can for all practical purposes be replaced by a single sum over Gaussian basis functions. This is extremely useful for expansion of multidimensional functions such as beams in phase space. Conditions of validity are given, and several examples illustrate the technique.
dc.format.extent5 pages
dc.format.mimetypeapplication/pdfen_US
dc.language.isoen_US
dc.publisherAmerican Institute of Physics
dc.rightsIn Copyrighten
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/en
dc.subjectBeamsen_US
dc.subjectGaussianen_US
dc.subjectGabor expansionen_US
dc.titleGaussian decomposition of beams and other functionsen_US
dc.typeArticle - Refereeden_US
dc.contributor.departmentElectrical and Computer Engineeringen_US
dc.identifier.urlhttp://scitation.aip.org/content/aip/journal/jap/65/12/10.1063/1.343144
dc.date.accessed2015-04-24
dc.title.serialJournal of Applied Physics
dc.identifier.doihttps://doi.org/10.1063/1.343144
dc.type.dcmitypeTexten_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record