Show simple item record

dc.contributorVirginia Tech. Department of Chemistryen
dc.contributorFlorida State University. Department of Physicsen
dc.contributorNational High Magnetic Field Laboratoryen
dc.contributorVirginia Commonwealth University. Department of Chemistryen
dc.contributorNaval Research Laboratory (U.S.). Center for Computational Materials Scienceen
dc.contributorInstitut Neel, associe a l’UJF, CNRSen
dc.contributor.authorChen, L.en
dc.contributor.authorCarpenter, Everett E.en
dc.contributor.authorHellberg, Carl S.en
dc.contributor.authorDorn, Harry C.en
dc.contributor.authorShultz, Michael D.en
dc.contributor.authorWernsdorfer, Wolfgangen
dc.contributor.authorChiorescu, Irinelen
dc.date.accessioned2015-05-05T21:51:26Zen
dc.date.available2015-05-05T21:51:26Zen
dc.date.issued2011-04-01en
dc.identifier.citationChen, L., Carpenter, E. E., Hellberg, C. S., Dorn, H. C., Shultz, M., Wernsdorfer, W., Chiorescu, I. (2011). Spin transition in Gd3N@C-80, detected by low-temperature on-chip SQUID technique. Journal of Applied Physics, 109(7). doi: 10.1063/1.3536514en
dc.identifier.issn0021-8979en
dc.identifier.urihttp://hdl.handle.net/10919/52021en
dc.description.abstractWe present a magnetic study of the Gd3N@C-80 molecule, consisting of a Gd-trimer via a nitrogen atom, encapsulated in a C-80 cage. This molecular system can be an efficient contrast agent for magnetic resonance imaging (MRI) applications. We used a low-temperature technique able to detect small magnetic signals by placing the sample in the vicinity of an on-chip SQUID. The technique implemented at the National High Magnetic Field Laboratory has the particularity of being able to operate in high magnetic fields of up to 7 T. The Gd3N@C80 shows a paramagnetic behavior and we find a spin transition of the Gd3N structure at 1.2 K. We perform quantum mechanical simulations, which indicate that one of the Gd ions changes from a S-8(7/2) state (L-0, S-7/2) to a F-7(6) state (L-S-3, J-6), likely due to a charge transfer between the C-80 cage and the ion. (C) 2011 American Institute of Physics. [doi: 10.1063/1.3536514]en
dc.description.sponsorshipNational Science Foundation (U.S.) - NSF Cooperative Agreement Grant No. DMR-0654118en
dc.description.sponsorshipNational Science Foundation (U.S.) - NSF-CAREER Grant No. DMR-0645408en
dc.description.sponsorshipAlfred P. Sloan Foundationen
dc.description.sponsorshipANRPNANO - MolNanoSpin ANR-08-NANO-002en
dc.description.sponsorshipERC Advanced Grant No. MolNanoSpin 226558en
dc.format.extent4 pagesen
dc.format.mimetypeapplication/pdfen
dc.language.isoen_USen
dc.publisherAmerican Institute of Physicsen
dc.rightsIn Copyrighten
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/en
dc.subjectSuperconducting quantum interference devicesen
dc.subjectMagnetic fieldsen
dc.subjectMagnetic susceptibilitiesen
dc.subjectJosephson junctionsen
dc.subjectMagnetic resonance imagingen
dc.titleSpin transition in Gd3N@C-80, detected by low-temperature on-chip SQUID techniqueen
dc.typeArticle - Refereeden
dc.contributor.departmentChemistryen
dc.identifier.urlhttp://scitation.aip.org/content/aip/journal/jap/109/7/10.1063/1.3536514en
dc.date.accessed2015-04-24en
dc.title.serialJournal of Applied Physicsen
dc.identifier.doihttps://doi.org/10.1063/1.3536514en
dc.type.dcmitypeTexten


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record