Virginia Tech
    • Log in
    View Item 
    •   VTechWorks Home
    • College of Engineering (COE)
    • Department of Materials Science and Engineering (MSE)
    • Scholarly Works, Materials Science and Engineering (MSE)
    • View Item
    •   VTechWorks Home
    • College of Engineering (COE)
    • Department of Materials Science and Engineering (MSE)
    • Scholarly Works, Materials Science and Engineering (MSE)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Modeling of high fluence Ti ion implantation and vacuum carburization in steel

    Thumbnail
    View/Open
    1985_Modeling_high_fluence_Ti.pdf (864.2Kb)
    Downloads: 305
    Date
    1985
    Author
    Farkas, Diana
    Singer, Irwin L.
    Rangaswamy, M.
    Metadata
    Show full item record
    Abstract
    Concentration‐versus‐depth profiles have been calculated for Ti and C in Ti‐implanted 52100 steel. A computer formalism was developed to account for diffusion and mixing processes, as well as sputtering and lattice dilation. A Gaussian distribution of Ti was assumed to be incorporated at each time interval. The effects of sputtering and lattice dilation were then included by means of an appropriate coordinate transformation. C was assumed to be gettered from the vacuum system in a one‐to‐one ratio with the surface Ti concentration up to a saturation point. Both Ti and C were allowed to diffuse. A series of experimental (Auger) concentration‐versus‐depth profiles of Ti‐implanted steel were analyzed using the above‐mentioned assumptions. A best fit procedure for these curves yielded information on the values of the sputtering yield, range, and straggling, as well as the mixing processes that occur during the implantation. The effective diffusivity of Ti was found to be 6×10− 1 5 cm2/sec, a value that is consistent with the cascade mixing mechanism. The effective diffusivity of C was found to be 6×10− 1 5 cm2/sec, and the sputtering yield by Ti atoms was best fit by a value of about 2. The observed range and straggling values were in very good agreement with the values predicted by existing theories, so long as the lattice was allowed to dilate.
    URI
    http://hdl.handle.net/10919/52409
    Collections
    • Scholarly Works, Materials Science and Engineering (MSE) [393]

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us
     

     

    VTechWorks

    AboutPoliciesHelp

    Browse

    All of VTechWorksCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Log inRegister

    Statistics

    View Usage Statistics

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us