Virginia Tech
    • Log in
    View Item 
    •   VTechWorks Home
    • College of Engineering (COE)
    • Department of Materials Science and Engineering (MSE)
    • Scholarly Works, Materials Science and Engineering (MSE)
    • View Item
    •   VTechWorks Home
    • College of Engineering (COE)
    • Department of Materials Science and Engineering (MSE)
    • Scholarly Works, Materials Science and Engineering (MSE)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Least‐squares analysis of x‐ray diffraction line shapes with analytic functions

    Thumbnail
    View/Open
    1981_Least_squares_analysis.pdf (760.3Kb)
    Downloads: 358
    Date
    1981
    Author
    Houska, Charles R.
    Smith, Terence M.
    Metadata
    Show full item record
    Abstract
    This is a second paper of a sequence that provides a useful analytic function which is based upon the Warren‐Averbach line shape analysis. Once the Fourier coefficients are interrelated in terms of a minimum number of parameters, the rather lengthy Fourier series can be evaluated by reducing it to a convolution of two known functions. One of these functions includes the particle size distribution, strain, and the Cauchy‐like contribution to the instrumental broadening. The second includes another strain parameter and the Gaussian contribution to the instrumental broadening. The resultant convolution integral is readily carried out using a nine‐point Gauss‐Legendre quadrature. Instrumental parameters are obtained from a separate convolution of Cauchy and Gaussian functions. This procedure reduces the computer time to one‐tenth the time required to synthesize the Fourier series and makes it feasible to carry out a least‐squares fitting of the profile data. Examples are given for Mo films and for an InSb film.
    URI
    http://hdl.handle.net/10919/52412
    Collections
    • Scholarly Works, Materials Science and Engineering (MSE) [377]

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us
     

     

    VTechWorks

    AboutPoliciesHelp

    Browse

    All of VTechWorksCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Log inRegister

    Statistics

    View Usage Statistics

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us