Virginia Tech
    • Log in
    View Item 
    •   VTechWorks Home
    • College of Engineering (COE)
    • Department of Materials Science and Engineering (MSE)
    • Scholarly Works, Materials Science and Engineering (MSE)
    • View Item
    •   VTechWorks Home
    • College of Engineering (COE)
    • Department of Materials Science and Engineering (MSE)
    • Scholarly Works, Materials Science and Engineering (MSE)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Adaptive ferroelectric states in systems with low domain wall energy: Tetragonal microdomains

    Thumbnail
    View/Open
    2003_Adaptive_ferroelectric_states.pdf (1.033Mb)
    Downloads: 659
    Date
    2003-09-01
    Author
    Jin, Y. M.
    Wang, Yu. U.
    Khachaturyan, Armen G.
    Li, Jiefang
    Viehland, Dwight D.
    Metadata
    Show full item record
    Abstract
    Ferroelectric and ferroelastic phases with very low domain wall energies have been shown to form miniaturized microdomain structures. A theory of an adaptive ferroelectric phase has been developed to predict the microdomain-averaged crystal lattice parameters of this structurally inhomogeneous state. The theory is an extension of conventional martensite theory, applied to ferroelectric systems with very low domain wall energies. The case of ferroelectric microdomains of tetragonal symmetry is considered. It is shown for such a case that a nanoscale coherent mixture of microdomains can be interpreted as an adaptive ferroelectric phase, whose microdomain-averaged crystal lattice is monoclinic. The crystal lattice parameters of this monoclinic phase are self-adjusting parameters, which minimize the transformation stress. Self-adjustment is achieved by application of the invariant plane strain to the parent cubic lattice, and the value of the self-adjusted parameters is a linear superposition of the lattice constants of the parent and product phases. Experimental investigations of Pb(Mg1/3Nb2/3)O-3-PbTiO3 and Pb(Zn1/3Nb2/3)O-3-PbTiO3 single crystals confirm many of the predictions of this theory. (C) 2003 American Institute of Physics.
    URI
    http://hdl.handle.net/10919/52488
    Collections
    • Scholarly Works, Materials Science and Engineering (MSE) [399]

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us
     

     

    VTechWorks

    AboutPoliciesHelp

    Browse

    All of VTechWorksCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Log inRegister

    Statistics

    View Usage Statistics

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us