Show simple item record

dc.contributor.authorWang, Chaofanen_US
dc.date.accessioned2015-05-23T08:09:04Z
dc.date.available2015-05-23T08:09:04Z
dc.date.issued2014-09-25en_US
dc.identifier.othervt_gsexam:3751en_US
dc.identifier.urihttp://hdl.handle.net/10919/52580
dc.description.abstractLong-period fiber gratings (LPGs) with a period ranging from several hundred micrometers to a few millimeters can couple a core mode to discrete co-propagating cladding modes when the phase matching condition is satisfied. The rapid attenuation of cladding modes results in loss bands in the transmission spectrum. As the attenuation bands are sensitive to the LPG period and the fiber surrounding environment such as temperature, strain and ambient refractive index, LPGs can be used for sensing. However, traditional LPGs with gratings inscribed in the fibers can only sense a single point and cannot be used for distributed sensing. Although new ideas were proposed to use traveling LPG formed by a pulsed acoustic wave, the large attenuation of the acoustic wave in the fiber greatly limits the sensing range to only several meters. In this thesis, we proposed to use a traveling LPG formed by the interference of two high power co-propagating core modes, usually LP01 and LP11. The beating of the two modes will induce a refractive index grating due to the optical Kerr effect, and the grating is called optically induced long-period fiber grating (OLPG). Compared to the grating induced by acoustic waves, OLPG is able to travel for a long distance due to the small attenuation of the guided core modes. Mode conversion in the OLPG is numerically simulated and analyzed using the finite-difference beam propagation method (FD-BPM). The result shows full conversion for both core-core and core-cladding mode coupling under phase matching condition. Moreover, the sensitivity of OLPG to temperature, axial strain and ambient refractive index is investigated and analyzed. It is seen that the sensitivities of temperature and axial strain with OLPG are different from the traditional LPGs since the period variation in OLPG is caused by the effective index difference of the two core modes at the writing wavelength, while in the traditional LPGs it is directly induced by temperature or strain. For the refractive index sensitivity with a large cladding, OLPG behaves the same as a traditional LPG with only material contributions since the grating period remains unchanged.en_US
dc.format.mediumETDen_US
dc.publisherVirginia Techen_US
dc.rightsThis Item is protected by copyright and/or related rights. Some uses of this Item may be deemed fair and permitted by law even without permission from the rights holder(s), or the rights holder(s) may have licensed the work for use under certain conditions. For other uses you need to obtain permission from the rights holder(s).en_US
dc.subjectOLPGen_US
dc.subjecttraveling LPGen_US
dc.subjectdistributed sensingen_US
dc.subjectfew mode fiberen_US
dc.subjectmode conversionen_US
dc.titleNumerical Analysis of Optically-induced Long-period Fiber Gratings for Sensing Applicationsen_US
dc.typeThesisen_US
dc.contributor.departmentElectrical and Computer Engineeringen_US
dc.description.degreeMaster of Scienceen_US
thesis.degree.nameMaster of Scienceen_US
thesis.degree.levelmastersen_US
thesis.degree.grantorVirginia Polytechnic Institute and State Universityen_US
thesis.degree.disciplineElectrical Engineeringen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record