Virginia Tech
    • Log in
    View Item 
    •   VTechWorks Home
    • ETDs: Virginia Tech Electronic Theses and Dissertations
    • Masters Theses
    • View Item
    •   VTechWorks Home
    • ETDs: Virginia Tech Electronic Theses and Dissertations
    • Masters Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Alternative strategies to incorporate biomolecules within electrospun meshes for tissue enginering

    Thumbnail
    View/Open
    Vaidya_PA_T_2014.pdf (5.926Mb)
    Downloads: 1792
    Supporting documents (255.4Kb)
    Downloads: 64
    Supporting documents (100.4Kb)
    Downloads: 104
    Supporting documents (117.5Kb)
    Downloads: 41
    Supporting documents (116.9Kb)
    Downloads: 23
    Date
    2014-10-15
    Author
    Vaidya, Prasad Avdhut
    Metadata
    Show full item record
    Abstract
    Rupture of the anterior cruciate ligament (ACL) is one of the most common ligamentous injuries of the knee. Post rupture, the ACL does not heal on itself due to poor vasculature and hence surgical intervention is required to treat the ACL. Current surgical management of ACL rupture consists of reconstruction with autografts or allografts. However, the limitations associated with these grafts have prompted interest in tissue engineered solutions that combine cells, scaffolds and stimuli to facilitate ACL regeneration. This thesis describes a ligament tissue engineering strategy that involves incorporating biomolecules within fibers-based electrospun meshes which mimics the extra-cellular matrix microarchitecture of ligament. However, challenges exist with incorporation of biomolecules. Therefore, the goal of this research project was to develop two techniques to incorporate biomolecules within electrospun meshes: (1) co-axially electrospinning fibers that support surface-grafting of biomolecules, and (2) co-axially electrospinning fibers decorated with biomolecule-loaded microspheres. In the first approach, chitosan was co-axially electrospun on the shell side of poly caprolactone (PCL) and arginine-glycine-aspartate (RGD) was attached to the electrospun meshes. Bone marrow stromal cells (BMSCs) attached, spread and proliferated on these meshes. In the second approach, fluorescein isothiocyanate labelled bovine serum albumin (FITC-BSA) loaded chitosan-alginate (CS-AL) microspheres were fabricated. The effects of cation to alginate ratio, type of alginate and concentration of CaCl2 on microsphere size, FITC-BSA loading and release were systematically evaluated. The CS-AL microspheres were then incorporated into the sheath phase of co-axially electrospun meshes to achieve microsphere-decorated fiber composite meshes. The results from these model study suggest that both approaches are tractable for incorporating biomolecules within fibers-based electrospun meshes. Both these approaches provide platform for future studies that can focus on ligament-relevant biomolecules such as FGF-2 and GDF-5.
    URI
    http://hdl.handle.net/10919/52583
    Collections
    • Masters Theses [21565]

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us
     

     

    VTechWorks

    AboutPoliciesHelp

    Browse

    All of VTechWorksCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Log inRegister

    Statistics

    View Usage Statistics

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us