Virginia Tech
    • Log in
    View Item 
    •   VTechWorks Home
    • College of Engineering (COE)
    • Department of Mechanical Engineering
    • Scholarly Works, Department of Mechanical Engineering
    • View Item
    •   VTechWorks Home
    • College of Engineering (COE)
    • Department of Mechanical Engineering
    • Scholarly Works, Department of Mechanical Engineering
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    The dissipated power in atomic force microscopy due to interactions with a capillary fluid layer

    Thumbnail
    View/Open
    2008_Dissipated_power_atomic_force.pdf (613.2Kb)
    Downloads: 214
    Date
    2008-09-15
    Author
    Hashemi, Nastaran
    Paul, Mark R.
    Dankowicz, Harry
    Lee, M.
    Jhe, W.
    Metadata
    Show full item record
    Abstract
    We study the power dissipated by the tip of an oscillating micron-scale cantilever as it interacts with a sample using a nonlinear model of the tip-surface force interactions that includes attractive, adhesive, repulsive, and capillary contributions. The force interactions of the model are entirely conservative and the dissipated power is due to the hysteretic nature of the interaction with the capillary fluid layer. Using numerical techniques tailored for nonlinear and discontinuous dynamical systems we compute the exact dissipated power over a range of experimentally relevant conditions. This is accomplished by computing precisely the fraction of oscillations that break the fluid meniscus. We find that the dissipated power as a function of the equilibrium cantilever-surface separation has a characteristic shape that we directly relate to the cantilever dynamics. Even for regions where the cantilever dynamics are highly irregular the fraction of oscillations breaking the fluid meniscus exhibits a simple trend. Using our results we also explore the accuracy of the often used harmonic approximation in determining dissipated power. (C) 2008 American Institute of Physics. [DOI: 10.1063/1.2980057]
    URI
    http://hdl.handle.net/10919/52619
    Collections
    • Scholarly Works, Department of Mechanical Engineering [323]

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us
     

     

    VTechWorks

    AboutPoliciesHelp

    Browse

    All of VTechWorksCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Log inRegister

    Statistics

    View Usage Statistics

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us