Virginia Tech
    • Log in
    View Item 
    •   VTechWorks Home
    • College of Engineering (COE)
    • Department of Mechanical Engineering
    • Scholarly Works, Department of Mechanical Engineering
    • View Item
    •   VTechWorks Home
    • College of Engineering (COE)
    • Department of Mechanical Engineering
    • Scholarly Works, Department of Mechanical Engineering
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    The stochastic dynamics of tethered microcantilevers in a viscous fluid

    Thumbnail
    View/Open
    2014_Robbins_et_al.pdf (830.0Kb)
    Downloads: 204
    Date
    2014-10-28
    Author
    Robbins, Brian A.
    Radiom, Milad
    Ducker, William A.
    Walz, John Y.
    Paul, Mark R.
    Metadata
    Show full item record
    Abstract
    We explore and quantify the coupled dynamics of a pair of micron scale cantilevers immersed in a viscous fluid that are also directly tethered to one another at their tips by a spring force. The spring force, for example, could represent the molecular stiffness or elasticity of a biomolecule or material tethered between the cantilevers. We use deterministic numerical simulations with the fluctuation-dissipation theorem to compute the stochastic dynamics of the cantilever pair for the conditions of experiment when driven only by Brownian motion. We validate our approach by comparing directly with experimental measurements in the absence of the tether which shows excellent agreement. Using numerical simulations, we quantify the correlated dynamics of the cantilever pair over a range of tether stiffness. Our results quantify the sensitivity of the auto-and cross-correlations of equilibrium fluctuations in cantilever displacement to the stiffness of the tether. We show that the tether affects the magnitude of the correlations which can be used in a measurement to probe the properties of an attached tethering substance. For the configurations of current interest using micron scale cantilevers in water, we show that the magnitude of the fluid coupling between the cantilevers is sufficiently small such that the influence of the tether can be significant. Our results show that the cross-correlation is more sensitive to tether stiffness than the auto-correlation indicating that a two-cantilever measurement has improved sensitivity when compared with a measurement using a single cantilever. (C) 2014 AIP Publishing LLC.
    URI
    http://hdl.handle.net/10919/52621
    Collections
    • Scholarly Works, Department of Mechanical Engineering [320]

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us
     

     

    VTechWorks

    AboutPoliciesHelp

    Browse

    All of VTechWorksCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Log inRegister

    Statistics

    View Usage Statistics

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us