Optical resonance of a two_level atomic system

TR Number
Date
1976
Journal Title
Journal ISSN
Volume Title
Publisher
American Institute of Physics
Abstract

The method of multiple scales is used to derive a solution of the damped optical Bloch equations of a two_level atomic system due to a strong pulsed field. The time dependence of the oscillations of the atomic inversion influenced by detuning and power broadening is found. The population inversion consists, in general, of three terms: a quasisteady term, quasisteady term that decays with time, and an oscillatory term that also decays with time. In the limit of constant fields, the solution of Torrey for damped systems and that of Rabi for undamped systems are recovered. For an adiabatic switching of the field, the solution for undamped systems reduces to that of Crisp in the adiabatic following limit. An equation describing the field envelope is derived for an arbitrary amount of detuning. At exact resonance, this equation reduces to a pendulum equation, in agreement with previous analyses.

Description
Keywords
Optical resonators
Citation
Nayfeh, M. H., Nayfeh, A. H. (1976). OPTICAL RESONANCE OF A 2-LEVEL ATOMIC SYSTEM. Journal of Applied Physics, 47(6), 2528-2531. doi: 10.1063/1.322969