Virginia Tech
    • Log in
    View Item 
    •   VTechWorks Home
    • College of Engineering (COE)
    • Department of Biomedical Engineering and Mechanics
    • Scholarly Works, Biomedical Engineering and Mechanics
    • View Item
    •   VTechWorks Home
    • College of Engineering (COE)
    • Department of Biomedical Engineering and Mechanics
    • Scholarly Works, Biomedical Engineering and Mechanics
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Lattice thermal conductivity of a silicon nanowire under surface stress

    Thumbnail
    View/Open
    2011_Lattice_thermal_conductivity.pdf (1.371Mb)
    Downloads: 719
    Date
    2011-06-01
    Author
    Liangruksa, Monrudee
    Puri, Ishwar K.
    Metadata
    Show full item record
    Abstract
    The effects of surface stress on the lattice thermal conductivity are investigated for a silicon nanowire. A phonon dispersion relation is derived based on a continuum approach for a nanowire under surface stress. The phonon Boltzmann equation and the relaxation time are employed to calculate the lattice thermal conductivity. Surface stress, which has a significant influence on the phonon dispersion and thus the Debye temperature, decreases the lattice thermal conductivity. The conductivity varies with changing surface stress, e. g., due to adsorption layers and material coatings. This suggests a phonon engineering approach to tune the conductivity of nanomaterials. (C) 2011 American Institute of Physics. [doi:10.1063/1.3583668]
    URI
    http://hdl.handle.net/10919/52879
    Collections
    • Scholarly Works, Biomedical Engineering and Mechanics [439]

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us
     

     

    VTechWorks

    AboutPoliciesHelp

    Browse

    All of VTechWorksCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Log inRegister

    Statistics

    View Usage Statistics

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us