Virginia Tech
    • Log in
    View Item 
    •   VTechWorks Home
    • ETDs: Virginia Tech Electronic Theses and Dissertations
    • Masters Theses
    • View Item
    •   VTechWorks Home
    • ETDs: Virginia Tech Electronic Theses and Dissertations
    • Masters Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Blind Comprehension of Waveforms through Statistical Observations

    Thumbnail
    View/Open
    ETD (4.899Mb)
    Downloads: 911
    Date
    2015
    Author
    Clark, William H. IV
    Metadata
    Show full item record
    Abstract
    This paper proposes a cumulant based classification means to identify waveforms for a blind receiver in the presence of time varying channels, which is built from the work done on cumulants in static channels currently in the literature. Results show the classification accuracy is on the order or better than current methods in use in static channels that do not vary over an observation period. This is accomplished by making use of second through tenth order cumulants in a signature vector that the search engine platform has the means of differentiating. A receiver can then blindly identify waveforms accurately in the presence of multipath Rayleigh fading with AWGN noise. Channel learning occurs prior to classification in order to identify the consistent distortion pattern for a waveform that is observable in the signature vector. Then using a database look-up method, the observed waveform is identified as belonging to a particular cluster based on the observed signature vector. If the distortion patterns are collected from a variety of channel types, the database can then classify both the waveform and the rough channel type that the waveform passed through. If the exact channel model or channel parameters is known and used as a limiter, significant improvement on the waveform classification can be achieved. Greater accuracy comes from using the exact channel model as the limiter.
    URI
    http://hdl.handle.net/10919/52908
    Collections
    • Masters Theses [21068]

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us
     

     

    VTechWorks

    AboutPoliciesHelp

    Browse

    All of VTechWorksCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Log inRegister

    Statistics

    View Usage Statistics

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us