Virginia Tech
    • Log in
    View Item 
    •   VTechWorks Home
    • ETDs: Virginia Tech Electronic Theses and Dissertations
    • Masters Theses
    • View Item
    •   VTechWorks Home
    • ETDs: Virginia Tech Electronic Theses and Dissertations
    • Masters Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Speaker Identification and Verification Using Line Spectral Frequencies

    Thumbnail
    View/Open
    Raman_P_T_2015.pdf (7.336Mb)
    Downloads: 2193
    Date
    2015-06-17
    Author
    Raman, Pujita
    Metadata
    Show full item record
    Abstract
    State-of-the-art speaker identification and verification (SIV) systems provide near perfect performance under clean conditions. However, their performance deteriorates in the presence of background noise. Many feature compensation, model compensation and signal enhancement techniques have been proposed to improve the noise-robustness of SIV systems. Most of these techniques require extensive training, are computationally expensive or make assumptions about the noise characteristics. There has not been much focus on analyzing the relative importance, or speaker-discriminative power of different speech zones, particularly under noisy conditions. In this work, an automatic, text-independent speaker identification (SI) system and speaker verification (SV) system is proposed using Line Spectral Frequency (LSF) features. The performance of the proposed SI and SV systems are evaluated under various types of background noise. A score-level fusion based technique is implemented to extract complementary information from static and dynamic LSF features. The proposed score-level fusion based SI and SV systems are found to be more robust under noisy conditions. In addition, we investigate the speaker-discriminative power of different speech zones such as vowels, non-vowels and transitions. Rapidly varying regions of speech such as consonant-vowel transitions are found to be most speaker-discriminative in high SNR conditions. Steady, high-energy vowel regions are robust against noise and are hence most speaker-discriminative in low SNR conditions. We show that selectively utilizing features from a combination of transition and steady vowel zones further improves the performance of the score-level fusion based SI and SV systems under noisy conditions.
    URI
    http://hdl.handle.net/10919/52964
    Collections
    • Masters Theses [21565]

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us
     

     

    VTechWorks

    AboutPoliciesHelp

    Browse

    All of VTechWorksCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Log inRegister

    Statistics

    View Usage Statistics

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us