Virginia Tech
    • Log in
    View Item 
    •   VTechWorks Home
    • ETDs: Virginia Tech Electronic Theses and Dissertations
    • Masters Theses
    • View Item
    •   VTechWorks Home
    • ETDs: Virginia Tech Electronic Theses and Dissertations
    • Masters Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Module Shaping and Exploration in Rapid FPGA Design and Assembly Workflows

    Thumbnail
    View/Open
    Lee_K_T_2015.pdf (4.247Mb)
    Downloads: 1655
    Date
    2015-06-25
    Author
    Lee, Kevin
    Metadata
    Show full item record
    Abstract
    The modular design methodology has been widely adopted to harness the complexity of large FPGA-based systems. As a result, a number of commercial and academic tool flows emerged to support modular design including Hierarchical Design Flow and Partial Reconfiguration Flow, OpenPR, HMFlow, PARBIT, REPLICA, GoAhead and QFlow frameworks. As all of these projects have shown, a modular approach raises the abstraction level, provides clear boundaries for incremental design, reduces placement complexity, and improves productivity. At the physical layer, modules can be compiled into rectangular regions, suitable for placement on the FPGA fabric. Creating a design then becomes the process of placing all of the modules on the FPGA, followed by inter-module routing. FPGAs, however, are not homogenous, and the shape of individual modules could greatly impact overall device utilization. Prior work in modular assembly utilize modules with a single shape and aspect ratio in the assembly process. Due to the increasing size and heterogeneity of contemporary FPGAs, the placement flexibility of such a module is becoming increasingly limited. This thesis introduces a process that exploits offline shape generation and exploration, enabling the selection of shapes using criterias such as resource usage efficiency, placement flexibility, and device utilization. Module shapes can be generated with these criterias in mind while still taking advantage of the reduced placement complexity of modular design and assembly
    URI
    http://hdl.handle.net/10919/53705
    Collections
    • Masters Theses [21534]

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us
     

     

    VTechWorks

    AboutPoliciesHelp

    Browse

    All of VTechWorksCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Log inRegister

    Statistics

    View Usage Statistics

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us