Hydrodynamic analysis and computer simulation applied to ship interaction during maneuvering in shallow channels

TR Number
Date
1989
Journal Title
Journal ISSN
Volume Title
Publisher
Virginia Polytechnic Institute and State University
Abstract

A generalized hydrodynamic interaction force model is combined with a ship maneuvering simulator to provide a free-running, closed loop ship simulation capable of trajectory predictions of ships operating in close proximity in a shallow, asymmetric canal. The interaction force model is based on the generalized Lagally's theorem, properly accounting for the orientations and dynamic motions of the ships. Also included are the lift forces and the cross-flow drag forces, which are found to be important for bank suction phenomena. A simplified method is implemented for box shapes, applicable for barge-tows operating in rivers. Results of the calculations are found to be generally in good agreement with experimental and other theoretical results.

This work would have utility in studying maneuvers involving ships and barges in close proximity and can be used in training pilots who operate in canals, harbors and rivers, and also in studying the effects of various steering control systems in the early design stages.

Description
Keywords
Citation