Quantitative approaches and applications to the sequence stratigraphy and biodiversity of Pleistocene – Holocene mollusk communities from the Po plain, Italy and San Salvador Island, the Bahamas

TR Number
Date
2014-03-26
Journal Title
Journal ISSN
Volume Title
Publisher
Virginia Tech
Abstract

The following chapters presented here use modern ecological data and modern marine systems to evaluate past marine depositional settings and the preservation potential of various environments in the geological record.

While the chapters in this dissertation vary in terms of study area, sedimentary systems (carbonate vs. siliciclastic), depositional environment, and organisms, all projects are based on developing and using quantitative models to evaluate the present as a means for understanding the past.

Chapter one focuses on the preservation potential of rocky intertidal environments. The rocky intertidal zone is one of the most poorly preserved fossil-rich environments in the geological record. However in most coastal marine habitats today, it is one of the most diversity rich environments. Chapter one also focuses on the analytical advantages of hierarchical sampling of gastropod communities across San Salvador Island, the Bahamas to quantify community and species level preservation potential in rocky shore environments. Chapters two and three are based on the fossil-rich sedimentary deposits from the Po coastal plain in northeastern Italy. These deposits have been widely studied in terms of their sedimentology and stratigraphy, resulting in a highly resolved sequence stratigraphic architecture. The integration of sequence stratigraphy with paleobiology can enhance our understanding of spatiotemporal biotic patterns recorded in the fossil record. Used in conjunction with the highly-resolved stratigraphic framework, biotic patterns can be used to assess depositional cycles and bathymetry through time. Chapter two integrates sequence stratigraphic patterns and paleoecological data to develop bathymetric models across fossiliferous marine successions of the Po coastal plain, Italy. Chapter three evaluates the modern ecological dataset used to derive the bathymetric models. The last chapter also explores water depth distribution for selected taxa recorded in the Quaternary sediments and observed in present-day habitats. The dissertation research explored here demonstrates that modern ecological systems are essential to evaluating past geologic events. Through direct observation and quantitative analysis, I have learned that modern and fossil communities behave differently depending on environment (e.g. energy, salinity, water depth, etc.). These variables affect the distribution of living organisms today and through my research, delineate fossil distributions through time. With these observations, new questions have arisen about the latitudinal variability of rocky intertidal fossil preservation and extrapolating the quantitative bathymetric models to deeper time intervals. These questions will lead to future endeavors and pointedly add to the field of geology and stratigraphic paleobiology.

Description
Keywords
Stratigraphic Paleobiology, Quaternary, Mollusks, Bathymetry, Sequence Stratigraphy, Rocky Shore, Intertidal, Diversity, Habitat, Preservation
Citation