Virginia Tech
    • Log in
    View Item 
    •   VTechWorks Home
    • ETDs: Virginia Tech Electronic Theses and Dissertations
    • Masters Theses
    • View Item
    •   VTechWorks Home
    • ETDs: Virginia Tech Electronic Theses and Dissertations
    • Masters Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    A finite difference solution to the two-dimensional wall jet on a combustion turbine blade

    Thumbnail
    View/Open
    LD5655.V855_1978.H37.pdf (1.821Mb)
    Downloads: 157
    Date
    1978
    Author
    Harsh, Martin D.
    Metadata
    Show full item record
    Abstract
    A simple model for the interaction of a tangentially oriented wall jet with the boundary layer is presented. The boundary-layer equations for steady, two-dimensional, homogeneous, incompressible flow are solved using an implicit finite difference technique. Calculations are performed for laminar and turbulent boundary layer flows with and without tangential jet injection. Results from the finite difference calculation for the laminar, non-injected cases are compared with the Falkner-Skan similarity solutions. Results from the finite difference calculation for the turbulent, noninj ected cases are compared with a two-parameter integral analysis. The boundary-layer calculation is applied to wall-jet injection near the leading edge of a representative combustion turbine blade. The blade geometry is developed by distributing a standard airfoil section over a single-parabolic camber line.
    URI
    http://hdl.handle.net/10919/64743
    Collections
    • Masters Theses [20805]

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us
     

     

    VTechWorks

    AboutPoliciesHelp

    Browse

    All of VTechWorksCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Log inRegister

    Statistics

    View Usage Statistics

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us