Virginia Tech
    • Log in
    View Item 
    •   VTechWorks Home
    • ETDs: Virginia Tech Electronic Theses and Dissertations
    • Doctoral Dissertations
    • View Item
    •   VTechWorks Home
    • ETDs: Virginia Tech Electronic Theses and Dissertations
    • Doctoral Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Design, Analysis and Experimental Verification of a Mechanically Compliant Interface for Fabricating Reliable, Double-Side Cooled, High Temperature, Sintered Silver Interconnected Power Modules

    Thumbnail
    View/Open
    Berry_DW_D_2014.pdf (12.34Mb)
    Downloads: 1418
    Supporting documents (650.5Kb)
    Downloads: 121
    Date
    2014-09-08
    Author
    Berry, David W.
    Metadata
    Show full item record
    Abstract
    This research developed a double-side power electronics packaging scheme for high temperature applications exemplified by 1200 V, 150 A silicon devices. The power modules, based on both quarter and half-bridge topologies, were assembled using sintered silver device attachment rather than conventional solder alloys. Thermomechanical stresses in the double-side architecture were mitigated with a compliant layer fabricated from elliptical silver tubes. This research presents an introduction to conventional packaging techniques and their weaknesses. These shortcomings provide the basis for a module design which improves upon module thermal management while also addressing electrical and reliability requirements. The optimum package design enhances heat dissipation with the addition of a substrate bonded to the top electrical pads of the semiconductor devices. The use of sintered silver also increases the useful application temperature by avoiding the creep failure mechanisms of solder alloys. The modules were characterized extensively to quantify thermal and electrical performance. In the case of thermal characterization, the double-side architecture required multiple testing configurations to fully understand the parallel heat flow paths. These results were compared to models constructed using finite element analysis (FEA). The FEA models were also utilized for measurement of strains in multiple package designs to better determine the effects of increased compliance on the relative package cycling lifetime. These lifetimes were then assessed, in part, using experimental passive and cycling tests on functional double-side packages. The resulting power modules exhibited significant decreases in thermal resistance when they are cooled, as designed, from both sides of the module. Even single sided cooling options reveal significant advantages and transient thermal impedance was found to be significantly lower. Power module models revealed the compliant layer was successful in reducing the device shear stresses which was experimentally validated through the use of DC power stage testing. It was found, through double pulse testing and electrical modeling, that parasitic inductances were reduced by utilizing planar bonding and planar symmetrical traces. Finally, modeling of the double-side package with added tube compliance revealed a decrease in plastic and shear strains when compared to other single and double-side package designs. This reduction directly translates to increased cycling lifetime using well known strain based fatigue models.
    URI
    http://hdl.handle.net/10919/64898
    Collections
    • Doctoral Dissertations [13611]

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us
     

     

    VTechWorks

    AboutPoliciesHelp

    Browse

    All of VTechWorksCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Log inRegister

    Statistics

    View Usage Statistics

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us