Show simple item record

dc.contributor.authorAkbar, Muhammaden_US
dc.contributor.authorShakeel, Hamzaen_US
dc.contributor.authorAgah, Masouden_US
dc.date.accessioned2016-03-18T22:24:50Z
dc.date.available2016-03-18T22:24:50Z
dc.date.issued2015-02-04
dc.identifier.citationAkbar, M., Shakeel, H., & Agah, M. (2015). GC-on-chip: integrated column and photoionization detector. Lab on a Chip, 15(7), 1748-1758. doi:10.1039/C4LC01461Hen_US
dc.identifier.issn1473-0197en_US
dc.identifier.other2015_Akbar_GC_on_chip_integrated_column.pdfen_US
dc.identifier.other1R21OH010330en_US
dc.identifier.otherECCS-1002279en_US
dc.identifier.urihttp://hdl.handle.net/10919/64946
dc.description.abstractThis paper reports a unique GC-on-chip module comprising a monolithically integrated semi-packed micro separation column (μSC) and a highly sensitive micro helium discharge photoionization detector (μDPID). While semi-packed μSC with atomic layer deposited (ALD) alumina as a stationary phase provides high separation performance, the μDPID implemented for the first time in a silicon–glass architecture inherits the desirable features of being universal, non-destructive, low power consumption (1.4 mW), and responsive. The integrated chip is 1.5 cm × 3 cm in size and requires a two-mask fabrication process. Monolithic integration alleviates the need for transfer lines between the column and the detector which improves the performance of the individual components with overall reduced fabrication and implementation costs. The chip is capable of operating under the isothermal as well as temperature and flow programming conditions to achieve rapid chromatographic analysis. The chip performance was investigated with two samples: 1) a multi-analyte gas mixture consisting of eight compounds ranging from 98 °C to 174 °C in boiling point and 2) a mixture containing higher alkanes (C9–C12). Our experiments indicate that the chip is capable of providing rapid chromatographic separation and detection of these compounds (<1 min) through the optimization of flow and temperature programming conditions. The GC-on-chip demonstrated a minimum detection limit of ~10 pg which is on a par with the widely used destructive flame ionization detector (FID).en_US
dc.description.sponsorshipNational Institute for Occupational Safety and Healthen_US
dc.description.sponsorshipNational Science Foundation (U.S.)en_US
dc.format.extent11 p.en_US
dc.format.mimetypeapplication/pdfen_US
dc.language.isoen_USen_US
dc.publisherThe Royal Society of Chemistryen_US
dc.rightsAttribution-NonCommercial 3.0 Unported*
dc.rights.urihttp://creativecommons.org/licenses/by-nc/3.0/*
dc.titleGC-on-chip: integrated column and photoionization detectoren_US
dc.typeArticle - Refereeden_US
dc.contributor.departmentVirginia Tech. Bradley Department of Electrical and Computer Engineeringen_US
dc.description.notes2015 Royal Society of Chemistry Open Access Gold Articleen_US
dc.date.accessed2016-03-17en_US
dc.title.serialLab on a Chipen_US
dc.identifier.doihttps://doi.org/10.1039/C4LC01461H
dc.identifier.volume15en_US
dc.identifier.issue7en_US
dc.type.dcmitypeTexten_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial 3.0 Unported
License: Attribution-NonCommercial 3.0 Unported