Virginia Tech
    • Log in
    View Item 
    •   VTechWorks Home
    • College of Agriculture and Life Sciences (CALS)
    • Sustainable Agriculture and Natural Resource Management (SANREM) Knowledgebase
    • View Item
    •   VTechWorks Home
    • College of Agriculture and Life Sciences (CALS)
    • Sustainable Agriculture and Natural Resource Management (SANREM) Knowledgebase
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Disease risk mapping with metamodels for coarse resolution predictors: Global potato late blight risk now and under future climate conditions

    Thumbnail
    Date
    2009
    Author
    Sparks, Adam H.
    Metadata
    Show full item record
    Abstract
    Late blight of potato, caused by Phytophthora infestans, is a pernicious disease of potatoes worldwide. This disease causes yield losses as a result of foliar and tuber damage. Many models exist to predict late blight risk for control purposes with-in season but rely upon fine-scale weather data collected in hourly, or finer, increments. This is a major constraint when working with disease prediction models for areas of the world where hourly weather data is not available or is unreliable. Weather or climate summary datasets are often available as monthly summaries. These provide a partial solution to this problem with global data at large time-steps (e.g., monthly). Difficulties arise when attempting to use these forms of data in small temporal scale models. My first objective was to develop new approaches for application of disease forecast models to coarser resolution weather data sets. I created metamodels based on daily and monthly weather values which adapt an existing potato late blight model for use with these coarser forms of data using generalized additive models. The daily and monthly weather metamodels have R-squared values of 0.62 and 0.78 respectively. These new models were used to map global late blight risk under current and climate change scenarios, and resistant and susceptible varieties. Changes in global disease risk for locations where wild potato species are indigenous, and disease risk for countries where chronic malnutrition is a problem were evaluated. Under the climate change scenario selected for use, A1B, future global late blight severity decreases. The risk patterns do not show major changes; areas of high risk remain high relative to areas of low risk with rather slight increases or decreases relative to previous years. Areas of higher wild potato species richness experience slightly increased blight risk, while areas of lower species richness experience a slight decline in risk.
    URI
    http://hdl.handle.net/10919/68896
    Collections
    • Sustainable Agriculture and Natural Resource Management (SANREM) Knowledgebase [3994]

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us
     

     

    VTechWorks

    AboutPoliciesHelp

    Browse

    All of VTechWorksCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Log inRegister

    Statistics

    View Usage Statistics

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us