Virginia Tech
    • Log in
    View Item 
    •   VTechWorks Home
    • ETDs: Virginia Tech Electronic Theses and Dissertations
    • Doctoral Dissertations
    • View Item
    •   VTechWorks Home
    • ETDs: Virginia Tech Electronic Theses and Dissertations
    • Doctoral Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Quasar Outflows: Their Scale, Behavior and Influence in the Host Galaxy

    Thumbnail
    View/Open
    Chamberlain_CW_D_2016.pdf (4.157Mb)
    Downloads: 521
    Date
    2016-05-04
    Author
    Chamberlain, Carter W.
    Metadata
    Show full item record
    Abstract
    Quasar outflows are a major candidate for Active Galactic Nuclei (AGN) feedback, and their capacity to influence the evolution of their host galaxy depends on the mass-flow rate (M) and kinetic luminosity (E) of the outflowing material. Both quantities require measurement of the distance (R) to the outflow from the central source as well as physical conditions of the outflow, which can be determined using spectral observations of the quasar. This thesis presents spectral analyses leading to measurements of R, M and E for three different quasar outflows. Analysis of LBQS J1206+1052 revealed multiple diagnostic spectral features that could each be used to independently determine R. These diagnostics yielded measurements that were in close agreement, resulting in a robust outflow distance of 840 pc from the central source. This measurement is much larger than predicted from radiative acceleration models (~0.01-0.1 pc), suggesting that outflows appear much farther from the central source than is generally assumed. The outflow in SDSS J0831+0354 was found to carry a kinetic luminosity of 1045.7 erg/s, which corresponds to 5.2 per cent of the Eddington luminosity of the quasar. This outflow is one of the most energetic outflows to date and satisfies the criteria required to produce AGN feedback effects. A variability study of NGC 5548 revealed an obscuring cloud of gas that shielded the outflow components, dramatically lowering their ionization state. This resulted in the appearance of absorption from the rare element Phosphorus, as well as from sparsely-populated energy levels of CIII and SiIII. These spectral features allowed for an accurate determination of R and for constraints on the ionization phase to be obtained. The latter constraints were used to develop a self-consistent model that explained the variability of all six outflow components during five observing epochs spanning 16 years.
    URI
    http://hdl.handle.net/10919/70911
    Collections
    • Doctoral Dissertations [14913]

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us
     

     

    VTechWorks

    AboutPoliciesHelp

    Browse

    All of VTechWorksCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Log inRegister

    Statistics

    View Usage Statistics

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us