Virginia Tech
    • Log in
    View Item 
    •   VTechWorks Home
    • ETDs: Virginia Tech Electronic Theses and Dissertations
    • Masters Theses
    • View Item
    •   VTechWorks Home
    • ETDs: Virginia Tech Electronic Theses and Dissertations
    • Masters Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    A finite element analysis and redesign of the draftsill casting on a railroad hopper car

    Thumbnail
    View/Open
    LD5655.V855_1987.R622.pdf (3.355Mb)
    Downloads: 119
    Date
    1987
    Author
    Roach, Douglas Kevin
    Metadata
    Show full item record
    Abstract
    This paper presents a static three-dimensional finite element analysis and redesign of a railroad hopper car draftsill. The purpose of the work was to modify the current draftsill structure to minimize its weight without compromising its current capabilities and foundry production specifications. The intuitive optimization procedure used both linear and parabolic isoparametric solid finite element models to check for solution convergence. In order to intuitively optimize the models, a composite plotting program was developed to display only the highest stresses at each node from all loading cases. This allowed for an overall visualization of low stressed regions for potential weight reduction. An additional study investigated the possibility of tapering the front and rear draftlugs for a better stress distribution in the draftsill's structure under loading. It was determined that a tapered relief of 0.025 - 0.050 in.(0.0635 - 0.127 cm) from the center of the draftlug to its outer edge would more effectively distribute the stresses created, and also reduce the maximum stress levels generated by at least 20 percent. All loading and geometry specifications used in this research were based on data provided by the Norfolk Southern Corporation. If both the redesign and tapered relief are adopted, then the final redesign will produce a draftsill that is approximately 106 lb(471.5 N) or 9.6 percent lighter than its original weight with maximum stresses reduced by 20 percent.
    URI
    http://hdl.handle.net/10919/71230
    Collections
    • Masters Theses [19660]

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us
     

     

    VTechWorks

    AboutPoliciesHelp

    Browse

    All of VTechWorksCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Log inRegister

    Statistics

    View Usage Statistics

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us