Virginia Tech
    • Log in
    View Item 
    •   VTechWorks Home
    • ETDs: Virginia Tech Electronic Theses and Dissertations
    • Masters Theses
    • View Item
    •   VTechWorks Home
    • ETDs: Virginia Tech Electronic Theses and Dissertations
    • Masters Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Surrogate Models for Transonic Aerodynamics for Multidisciplinary Design Optimization

    Thumbnail
    View/Open
    Supporting documents (8.707Mb)
    Downloads: 78
    Supporting documents (540.6Kb)
    Downloads: 98
    Supporting documents (8.721Mb)
    Downloads: 41
    Segee_MC_T_2016.pdf (18.85Mb)
    Downloads: 987
    Supporting documents (8.731Mb)
    Downloads: 49
    Date
    2016-06-06
    Author
    Segee, Molly Catherine
    Metadata
    Show full item record
    Abstract
    Multidisciplinary design optimization (MDO) requires many designs to be evaluated while searching for an optimum. As a result, the calculations done to evaluate the designs must be quick and simple to have a reasonable turn-around time. This makes aerodynamic calculations in the transonic regime difficult. Running computational fluid dynamics (CFD) calculations within the MDO code would be too computationally expensive. Instead, CFD is used outside the MDO to find two-dimensional aerodynamic properties of a chosen airfoil shape, BACJ, at a number of points over a range of thickness-to-chord ratios, free-stream Mach numbers, and lift coefficients. These points are used to generate surrogate models which can be used for the two-dimensional aerodynamic calculations required by the MDO computational design environment. Strip theory is used to relate these two-dimensional results to the three-dimensional wing. Models are developed for the center of pressure location, the lift curve slope, the wave drag, and the maximum allowable lift coefficient before buffet. These models have good agreement with the original CFD results for the airfoil. The models are integrated into the aerodynamic and aeroelastic sections of the MDO code.
    URI
    http://hdl.handle.net/10919/71321
    Collections
    • Masters Theses [19598]

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us
     

     

    VTechWorks

    AboutPoliciesHelp

    Browse

    All of VTechWorksCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Log inRegister

    Statistics

    View Usage Statistics

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us