Virginia Tech
    • Log in
    View Item 
    •   VTechWorks Home
    • ETDs: Virginia Tech Electronic Theses and Dissertations
    • Doctoral Dissertations
    • View Item
    •   VTechWorks Home
    • ETDs: Virginia Tech Electronic Theses and Dissertations
    • Doctoral Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Unexpected mechanical properties of nucleic acids

    Thumbnail
    View/Open
    Drozdetski_AV_D_2016.pdf (4.864Mb)
    Downloads: 1403
    Date
    2016-06-28
    Author
    Drozdetski, Aleksander Vladimirovich
    Metadata
    Show full item record
    Abstract
    Mechanical deformations of nucleic acids (NA) play a very important role in many biological life processes. The bending persistence length of DNA is of specific interest, because so much eukaryotic DNA that stores genetic information is tightly packed inside cell nuclei, even though DNA is considered to be a relatively stiff biopolymer. However, recent experiments suggest that DNA may be more flexible than its persistence length (~ 150 bp or ~ 47 nm) suggests, especially for fragments shorter than 100 bp. It is important to reconcile these two seemingly competing pictures of DNA bending by providing a model that can explain the novel results without discrediting old experiments and the widely-accepted worm-like chain model. Another factor that influences both molecular geometry as well as mechanical properties is the ionic atmosphere surrounding the NA. It is known that multivalent ions with charge of +3e and higher can condense DNA into aggregates at high enough concentration. However, most conventional models cannot explain why RNA and DNA condense at different concentrations. Furthermore, our recent simulation results suggest that even though DNA persistence length decreases with multivalent ion concentration due to increasing electrostatic screening, RNA actually becomes stiffer due to a structural transition from the internal binding of the counterions.
    URI
    http://hdl.handle.net/10919/71660
    Collections
    • Doctoral Dissertations [14204]

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us
     

     

    VTechWorks

    AboutPoliciesHelp

    Browse

    All of VTechWorksCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Log inRegister

    Statistics

    View Usage Statistics

    If you believe that any material in VTechWorks should be removed, please see our policy and procedure for Requesting that Material be Amended or Removed. All takedown requests will be promptly acknowledged and investigated.

    Virginia Tech | University Libraries | Contact Us